Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 113(1): 126-142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261463

RESUMO

In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.


Assuntos
Cálcio , Transdução de Sinais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Osteócitos/metabolismo , Transporte Biológico
2.
Curr Osteoporos Rep ; 20(6): 365-378, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149592

RESUMO

PURPOSE OF REVIEW: In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS: Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.


Assuntos
Cálcio , Humanos , Gabapentina/farmacologia , Ácido gama-Aminobutírico/uso terapêutico , Ácido gama-Aminobutírico/farmacologia , Homeostase , Pregabalina/uso terapêutico , Pregabalina/farmacologia
3.
Mol Psychiatry ; 25(3): 560-571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30022042

RESUMO

Mania is a serious neuropsychiatric condition associated with significant morbidity and mortality. Previous studies have suggested that environmental exposures can contribute to mania pathogenesis. We measured dietary exposures in a cohort of individuals with mania and other psychiatric disorders as well as in control individuals without a psychiatric disorder. We found that a history of eating nitrated dry cured meat but not other meat or fish products was strongly and independently associated with current mania (adjusted odds ratio 3.49, 95% confidence interval (CI) 2.24-5.45, p < 8.97 × 10-8). Lower odds of association were found between eating nitrated dry cured meat and other psychiatric disorders. We further found that the feeding of meat preparations with added nitrate to rats resulted in hyperactivity reminiscent of human mania, alterations in brain pathways that have been implicated in human bipolar disorder, and changes in intestinal microbiota. These findings may lead to new methods for preventing mania and for developing novel therapeutic interventions.


Assuntos
Mania/fisiopatologia , Produtos da Carne/efeitos adversos , Nitratos/efeitos adversos , Adulto , Animais , Transtorno Bipolar/etiologia , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Humanos , Hipercinese/metabolismo , Masculino , Mania/etiologia , Mania/metabolismo , Produtos da Carne/análise , Ratos , Ratos Sprague-Dawley
4.
Curr Osteoporos Rep ; 19(2): 206-221, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33721180

RESUMO

Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.


Assuntos
Osso e Ossos/metabolismo , Canais de Cálcio/fisiologia , Animais , Osso e Ossos/citologia , Humanos , Distribuição Tecidual/fisiologia
5.
J Nutr ; 147(2): 179-186, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28003538

RESUMO

BACKGROUND: Controversy exists concerning the effects of higher total protein intake (TPro) on bone health, which may be associated with reduced bone mineral density (BMD). However, whey protein (WP) may induce bone formation because of its basic component, milk basic protein. OBJECTIVE: This study assessed the effects of WP supplementation, TPro, and change in TPro (postsupplementation - presupplementation) on BMD and bone mineral content (BMC; total body, lumbar spine, total femur, and femoral neck) in overweight and class I obese middle-aged adults following an exercise intervention. METHODS: This analysis used data from a double-blind, randomized, placebo-controlled 36-wk WP supplementation trial, wherein participants consumed a 1.7-MJ (400-kcal) supplement (0, 20, 40, or 60 g WP/d) along with their otherwise unrestricted diet while participating in a resistance and aerobic exercise intervention (3 d/wk). TPro was the summation of WP and habitual dietary intakes (4-d food record). Statistical analyses for WP were based on group and bone data [n = 186, 108 women; mean ± SD age: 49 ± 8 y; body mass index (BMI; in kg/m2): 30.1 ± 2.8], whereas TPro was based on dietary and bone data (n = 113, 70 women; age 50 ± 8 y; BMI 30.1 ± 2.9). RESULTS: WP supplementation, regardless of dose, did not influence BMD or BMC following the intervention. By using a multiple linear regression model, TPro (expressed as g/d or g · kg-1 · d-1) and change in TPro (expressed as g/d) were not associated with responses over time in total or regional BMD or BMC. By using a cluster analysis approach [<1.0 (n = 41), 1.0-1.2 (n = 28), and ≥1.2 g · kg-1 · d-1 (n = 44)], TPro was also not associated with responses in total or regional BMD or BMC over time. CONCLUSION: WP supplementation and total dietary protein intake did not negatively or beneficially influence bone quantity in overweight and obese adults during a 9-mo exercise intervention. This trial was registered at clinicaltrials.gov as NCT00812409.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas Alimentares , Suplementos Nutricionais , Exercício Físico , Sobrepeso/metabolismo , Proteínas do Soro do Leite/administração & dosagem , Adulto , Dieta Redutora , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade
6.
Endocr Res ; 41(2): 103-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26727029

RESUMO

UNLABELLED: Research suggests that subclinical hypothyroidism (SHT) influences insulin sensitivity and glucose tolerance. Reductions in thyroid stimulating hormone (TSH) concentrations are associated with exercise training (ExTr), which improves insulin sensitivity and glucose uptake. PURPOSE: A secondary analysis of previously published data was conducted to examine the relationship between SHT, TSH and glucose homeostatic control at baseline and to assess the impact of ExTr on thyroid status and how SHT affects changes in insulin sensitivity after ExTr. MATERIALS AND METHODS: Data were obtained from a 36-week ExTr and whey protein supplementation intervention trial. Subjects (n = 304, 48 ± 7 years, females = 186) were randomized to a specific whey protein group (0, 20, 40, or 60 g per day) and all subjects participated in a resistance (2 d/wk) and aerobic (1 d/wk) training program. Testing was conducted at baseline and post-intervention. RESULTS: At baseline, 36% (n = 110) and 12% (n = 35) of subjects were classified with SHT based on the TSH ≥ 3 µIU/L or TSH ≥ 4.5 µIU/L cut-offs, respectively. No association was found between baseline TSH and baseline measures of glucose homeostatic control. Whey protein supplementation did not influence intervention outcomes. Post-intervention (n = 164), no change was observed in TSH. SHT did not affect changes in insulin sensitivity following ExTr. CONCLUSION: These results support that the health benefits of ExTr for the management of insulin resistance (IR) are not blunted by SHT.


Assuntos
Terapia por Exercício/métodos , Hipotireoidismo/sangue , Hipotireoidismo/terapia , Avaliação de Resultados em Cuidados de Saúde , Sobrepeso/sangue , Sobrepeso/terapia , Proteínas do Soro do Leite/farmacologia , Adulto , Glicemia/metabolismo , Terapia Combinada , Suplementos Nutricionais , Feminino , Teste de Tolerância a Glucose , Humanos , Hipotireoidismo/dietoterapia , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/dietoterapia , Obesidade/terapia , Sobrepeso/dietoterapia , Tireotropina/sangue , Proteínas do Soro do Leite/administração & dosagem
7.
J Nutr ; 145(12): 2683-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446485

RESUMO

BACKGROUND: Research indicates that plasma 25-hydroxyvitamin D [25(OH)D] is associated with insulin resistance, but whether regional adiposity confounds this association is unclear. OBJECTIVE: This study assessed the potential influence of adiposity and its anatomical distribution on the relation between plasma 25(OH)D and insulin resistance. METHODS: A secondary analysis of data from middle-aged overweight and obese healthy adults [n = 336: 213 women and 123 men; mean ± SD (range); age: 48 ± 8 y (35-65 y); body mass index (BMI; in kg/m2): 30.3 ± 2.7 (26-35)] from West Lafayette, Indiana (40.4 °N), were used for this cross-sectional analysis. Multiple linear regression analyses that controlled for multiple covariates were used as the primary statistical model. RESULTS: Of all participants, 8.6% and 20.5% displayed moderate [20.1-37.5 nmol/L plasma 25(OH)D] to mild (37.6-49.9 nmol/L) vitamin D insufficiency, respectively. A regression analysis controlling for age, sex, race, plasma parathyroid hormone concentration, season of year, and supplement use showed that 25(OH)D was negatively associated with fasting insulin (P = 0.021). Additional regression analyses showed that total and central adiposity but not peripheral adiposity predicted low plasma 25(OH)D [total fat mass index (FMI): P = 0.018; android FMI: P = 0.052; gynoid FMI: P = 0.15; appendicular FMI: P = 0.07) and insulin resistance (homeostasis model assessment of insulin resistance: total and android FMI, P <0.0001; gynoid FMI, P = 0.94; appendicular FMI, P = 0.86). The associations of total and central adiposity with insulin resistance remained significant after adjusting for plasma 25(OH)D. However, adjusting for central adiposity but not other anatomical measures of fat distribution eliminated the association between plasma 25(OH)D and insulin resistance. CONCLUSION: Central adiposity drives the association between plasma 25(OH)D and insulin resistance in overweight and obese adults. The trial was registered at clinicaltrials.gov as NCT00812409.


Assuntos
Resistência à Insulina/fisiologia , Obesidade Abdominal/fisiopatologia , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Vitamina D/análogos & derivados , Adulto , Idoso , Composição Corporal , Índice de Massa Corporal , Estudos Transversais , Método Duplo-Cego , Feminino , Humanos , Indiana , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/sangue , Placebos , Vitamina D/sangue
8.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477790

RESUMO

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Assuntos
Osteócitos , Osteogênese , Camundongos , Masculino , Feminino , Animais , Osteócitos/metabolismo , Osteogênese/genética , Cálcio/metabolismo , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
9.
JBMR Plus ; 8(2): ziad008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505532

RESUMO

Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.

10.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790521

RESUMO

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter, a pivotal regulator of skeletal development. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. Although PDLD animals displayed increased voluntary running activity, a 6-week exercise intervention did not significantly alter bone microarchitecture or mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA