Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dtsch Dermatol Ges ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899945

RESUMO

BACKGROUND AND OBJECTIVES: Malignant sweat gland tumors are rare, with the most common being eccrine porocarcinoma (EP). Approximately 18% of benign eccrine poroma (EPO) transit to EP. Previous research has provided first insights into the mutational landscape of EP. However, only few studies have performed gene expression analyses. This leaves a gap in the understanding of EP biology and potential drivers of malignant transformation from EPO to EP. METHODS: Transcriptome profiling of 23 samples of primary EP and normal skin (NS). Findings from the EP samples were then tested in 17 samples of EPO. RESULTS: Transcriptome profiling revealed diversity in gene expression and indicated biologically heterogeneous sub-entities as well as widespread gene downregulation in EP. Downregulated genes included CD74, NDGR1, SRRM2, CDC42, ANXA2, KFL9 and NOP53. Expression levels of CD74, NDGR1, SRRM2, ANXA2, and NOP53 showed a stepwise-reduction in expression from NS via EPO to EP, thus supporting the hypothesis that EPO represents a transitional state in EP development. CONCLUSIONS: We demonstrated that EP is molecularly complex and that evolutionary trajectories correspond to tumor initiation and progression. Our results provide further evidence implicating the p53 axis and the EGFR pathway. Larger samples are warranted to confirm our findings.

2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445727

RESUMO

Podocytes are highly specialized cells that play a pivotal role in the blood filtration process in the glomeruli of the kidney, and their dysfunction leads to renal diseases. For this reason, the study and application of this cell type is of great importance in the field of regenerative medicine. Hypertension is mainly regulated by the renin-angiotensin-aldosterone system (RAAS), with its main mediator being angiotensin II (ANG II). Elevated ANG II levels lead to a pro-fibrotic, inflammatory, and hypertrophic milieu that induces apoptosis in podocytes. The activation of RAAS is critical for the pathogenesis of podocyte injury; as such, to prevent podocyte damage, patients with hypertension are administered drugs that modulate RAAS signaling. A prime example is the orally active, non-peptide, selective angiotensin-II-type I receptor (AGTR1) blocker losartan. Here, we demonstrate that SIX2-positive urine-derived renal progenitor cells (UdRPCs) and their immortalized counterpart (UM51-hTERT) can be directly differentiated into mature podocytes. These podocytes show activation of RAAS after stimulation with ANG II, resulting in ANG II-dependent upregulation of the expression of the angiotensin-II-type I receptor, AGTR1, and the downregulated expression of the angiotensin-II-type II receptor 2 (AGTR2). The stimulation of podocytes with losartan counteracts ANG II-dependent changes, resulting in a dependent favoring of the specific receptor from AGTR1 to AGTR2. Transcriptome analysis revealed 94 losartan-induced genes associated with diverse biological processes and pathways such as vascular smooth muscle contraction, the oxytocin signaling pathway, renin secretion, and ECM-receptor interaction. Co-stimulation with losartan and ANG II induced the exclusive expression of 106 genes associated with DNA methylation or demethylation, cell differentiation, the developmental process, response to muscle stretch, and calcium ion transmembrane transport. These findings highlight the usefulness of UdRPC-derived podocytes in studying the RAAS pathway and nephrotoxicity in various kidney diseases.


Assuntos
Hipertensão , Podócitos , Humanos , Losartan/farmacologia , Losartan/metabolismo , Angiotensina II/metabolismo , Podócitos/metabolismo , Redes Reguladoras de Genes , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Hipertensão/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175937

RESUMO

Acute kidney injury (AKI) is a major kidney disease with a poor clinical outcome. It is a common complication, with an incidence of 10-15% of patients admitted to hospital. This rate even increases for patients who are admitted to the intensive care unit, with an incidence of >50%. AKI is characterized by a rapid increase in serum creatinine, decrease in urine output, or both. The associated symptoms include feeling sick or being sick, diarrhoea, dehydration, decreased urine output (although occasionally the urine output remains normal), fluid retention causing swelling in the legs or ankles, shortness of breath, fatigue and nausea. However, sometimes acute kidney injury causes no signs or symptoms and is detected by lab tests. Therefore, the identification of cytokines for the early detection and diagnosis of AKI is highly desirable, as their application might enable the prevention of the progression from AKI to chronic kidney disease (CKD). In this study, we analysed the secretome of the urine of an AKI patient cohort by employing a kidney-biomarker cytokine assay. Based on these results, we suggest ADIPOQ, EGF and SERPIN3A as potential cytokines that might be able to detect AKI as early as 24 h post-surgery. For the later stages, as common cytokines for the detection of AKI in both male and female patients, we suggest VEGF, SERPIN3A, TNFSF12, ANPEP, CXCL1, REN, CLU and PLAU. These cytokines in combination might present a robust strategy for identifying the development of AKI as early as 24 h or 72 h post-surgery. Furthermore, we evaluated the effect of patient and healthy urine on human podocyte cells. We conclude that cytokines abundant in the urine of AKI patients trigger processes that are needed to repair the damaged nephron and activate TP53 and SIRT1 to maintain the balance between proliferation, angiogenesis, and cell cycle arrest.


Assuntos
Injúria Renal Aguda , Podócitos , Humanos , Masculino , Feminino , Citocinas , Sirtuína 1 , Injúria Renal Aguda/etiologia , Rim , Creatinina , Biomarcadores/urina , Proteína Supressora de Tumor p53
4.
J Cell Mol Med ; 25(3): 1394-1405, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448076

RESUMO

Yolk-sac tumours (YSTs), a germ cell tumour subtype, occur in newborns and infants as well as in young adults of age 14-44 years. In clinics, adult patients with YSTs face a poor prognosis, as these tumours are often therapy-resistant and count for many germ cell tumour related deaths. So far, the molecular and (epi)genetic mechanisms that control development of YST are far from being understood. We deciphered the molecular and (epi)genetic mechanisms regulating YST formation by meta-analysing high-throughput data of gene and microRNA expression, DNA methylation and mutational burden. We validated our findings by qRT-PCR and immunohistochemical analyses of paediatric and adult YSTs. On a molecular level, paediatric and adult YSTs were nearly indistinguishable, but were considerably different from embryonal carcinomas, the stem cell precursor of YSTs. We identified FOXA2 as a putative key driver of YST formation, subsequently inducing AFP, GPC3, APOA1/APOB, ALB and GATA3/4/6 expression. In YSTs, WNT-, BMP- and MAPK signalling-related genes were up-regulated, while pluripotency- and (primordial) germ cell-associated genes were down-regulated. Expression of FOXA2 and related key factors seems to be regulated by DNA methylation, histone methylation / acetylation and microRNAs. Additionally, our results highlight FOXA2 as a promising new biomarker for paediatric and adult YSTs.


Assuntos
Biomarcadores Tumorais , Tumor do Seio Endodérmico/genética , Tumor do Seio Endodérmico/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fatores Etários , Linhagem Celular Tumoral , Metilação de DNA , Suscetibilidade a Doenças , Tumor do Seio Endodérmico/patologia , Humanos , Imuno-Histoquímica , Modelos Biológicos
5.
Malar J ; 20(1): 383, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565410

RESUMO

BACKGROUND: Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS: An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS: In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS: Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.


Assuntos
Degranulação Celular , Dano ao DNA , Malária Falciparum/fisiopatologia , Neutrófilos/fisiologia , Plasmodium falciparum/fisiologia , Transcriptoma , Teste em Amostras de Sangue Seco , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Neoplasias/complicações , Doenças Neurodegenerativas/complicações
6.
BMC Genomics ; 21(1): 265, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228434

RESUMO

BACKGROUND: Marine endophytic fungi (MEF) are good sources of structurally unique and biologically active secondary metabolites. Due to the increase in antimicrobial resistance, the secondary metabolites from MEF ought to be fully explored to identify candidates which could serve as lead compounds for novel drug development. These secondary metabolites might also be useful for development of new cancer drugs. In this study, ethyl acetate extracts from marine endophytic fungal cultures were tested for their antifungal activity and anticancer properties against C. albicans and the human liver cancer cell line HepG2, respectively. The highly enriched fractions were also analyzed by high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HRMS) and their effect on the HepG2 cells was assessed via transcriptomics and with a proliferation assay. RESULTS: We demonstrated that the fractions could reduce proliferation in HepG2 cells. The detailed transcriptome analysis revealed regulation of several cancer- and metabolism-related pathways and gene ontologies. The down-regulated pathways included, cell cycle, p53 signaling, DNA replication, sphingolipid metabolism and drug metabolism by cytochrome P450. The upregulated pathways included HIF-1 signaling, focal adhesion, necroptosis and transcriptional mis-regulation of cancer. Furthermore, a protein interaction network was constructed based on the 26 proteins distinguishing the three treatment conditions from the untreated cells. This network was composed of central functional components associated with metabolism and cancer such as TNF, MAPK, TRIM21 and one component contained APP. CONCLUSIONS: The purified fractions from MEF investigated in this study showed antifungal activity against C. albicans and S. cerevisiae alone or both and reduced proliferation of the human liver cancer cell line HepG2 implicating regulation of several cancer- and metabolism-related pathways. The data from this study could be instrumental in identifying new pathways associated with liver cancer anti-proliferative processes which can be used for the development of novel antifungal and anti-cancer drugs.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Endófitos/química , Transcriptoma/genética , Antifúngicos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/efeitos dos fármacos , Alga Marinha/química
7.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630447

RESUMO

Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer's disease (AD) 2-3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer's disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aß-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aß-induced gene regulatory network, we were able to identify an Aß signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Células Mieloides/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Receptores Imunológicos/metabolismo
8.
Reproduction ; 158(3): R97-R111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035255

RESUMO

Pluripotency is the developmental potential of a cell to give rise to all the cells in the three embryonic germ layers, including germline cells. Pluripotent stem cells (PSCs) can be embryonic, germ cell or somatic cell in origin and can adopt alternative states of pluripotency: naïve or primed. Although several reports have described the differentiation of PSCs to extra-embryonic lineages, such as primitive endoderm and trophectoderm, this is still debated among scientists in the field. In this review, we integrate the recent findings on pluripotency among mammals, alternative states of pluripotency, signalling pathways associated with maintaining pluripotency and the nature of PSCs derived from various mammals. PSCs from humans and mouse have been the most extensively studied. In other mammalian species, more research is required for understanding the optimum in vitro conditions required for either achieving pluripotency or preservation of distinct pluripotent states. A comparative high-throughput analysis of PSCs of genes expressed in naïve or primed states of humans, nonhuman primates (NHP) and rodents, based on publicly available datasets revealed the probable prominence of seven signalling pathways common among these species, irrespective of the states of pluripotency. We conclude by highlighting some of the unresolved questions and future directions of research on pluripotency in mammals.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Animais , Humanos
9.
Stem Cells ; 35(1): 89-96, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374784

RESUMO

Considered a feature of the metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), is associated with insulin resistance, type 2 diabetes, obesity and drug toxicity. Its prevalence is estimated at about 30% in western countries mainly due to sedentary life styles and high fat diets. Genome-wide association studies have identified polymorphisms in several genes, for example, PNPLA3, and TM6SF2 which confer susceptibility to NAFLD. Here, we review recent findings in the NAFLD field with a particular focus on published transcriptomics datasets which we subject to a meta-analysis. We reveal a common gene signature correlating with the progression of the disease from steatosis and steatohepatitis and reveal that lipogenic and cholesterol metabolic pathways are main actors in this signature. We propose the use of disease-in-a-dish models based on hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSC). These will enable investigations into the contribution of genetic background in the progression from NALFD to non-alcoholic steatohepatitis. Furthermore, an iPSC-based approach should aid in the elucidation of the function of new biomarkers, thus enabling better diagnostic tests and validation of potential drug targets. Stem Cells 2017;35:89-96.


Assuntos
Pesquisa Biomédica , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Progressão da Doença , Epigênese Genética , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Humanos
10.
Mol Ther ; 25(2): 427-442, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153093

RESUMO

Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3ß inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.


Assuntos
Âmnio/citologia , Transdiferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Biomarcadores , Ciclo Celular/genética , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético , Epigênese Genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Glicólise , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional
11.
Brief Bioinform ; 15(1): 65-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047157

RESUMO

Good accessibility of publicly funded research data is essential to secure an open scientific system and eventually becomes mandatory [Wellcome Trust will Penalise Scientists Who Don't Embrace Open Access. The Guardian 2012]. By the use of high-throughput methods in many research areas from physics to systems biology, large data collections are increasingly important as raw material for research. Here, we present strategies worked out by international and national institutions targeting open access to publicly funded research data via incentives or obligations to share data. Funding organizations such as the British Wellcome Trust therefore have developed data sharing policies and request commitment to data management and sharing in grant applications. Increased citation rates are a profound argument for sharing publication data. Pre-publication sharing might be rewarded by a data citation credit system via digital object identifiers (DOIs) which have initially been in use for data objects. Besides policies and incentives, good practice in data management is indispensable. However, appropriate systems for data management of large-scale projects for example in systems biology are hard to find. Here, we give an overview of a selection of open-source data management systems proved to be employed successfully in large-scale projects.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Biologia de Sistemas/estatística & dados numéricos , Acesso à Informação , Biologia Computacional , Coleta de Dados , Disseminação de Informação , Internacionalidade , Software
12.
BMC Genomics ; 16: 925, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26564201

RESUMO

BACKGROUND: Next Generation Sequencing has proven to be an exceptionally powerful tool in the field of genomics and transcriptomics. With recent development it is nowadays possible to analyze ultra-low input sample material down to single cells. Nevertheless, investigating such sample material often limits the analysis to either the genome or transcriptome. We describe here a combined analysis of both types of nucleic acids from the same sample material. METHODS: The method described enables the combined preparation of amplified cDNA as well as amplified whole-genome DNA from an ultra-low input sample material derived from a sub-colony of in-vitro cultivated human embryonic stem cells. cDNA is prepared by the application of oligo-dT coupled magnetic beads for mRNA capture, first strand synthesis and 3'-tailing followed by PCR. Whole-genome amplified DNA is prepared by Phi29 mediated amplification. Illumina sequencing is applied to short fragment libraries prepared from the amplified samples. RESULTS: We developed a protocol which enables the combined analysis of the genome as well as the transcriptome by Next Generation Sequencing from ultra-low input samples. The protocol was evaluated by sequencing sub-colony structures from human embryonic stem cells containing 150 to 200 cells. The method can be adapted to any available sequencing system. CONCLUSIONS: To our knowledge, this is the first report where sub-colonies of human embryonic stem cells have been analyzed both at the genomic as well as transcriptome level. The method of this proof of concept study may find useful practical applications for cases where only a limited number of cells are available, e.g. for tissues samples from biopsies, tumor spheres, circulating tumor cells and cells from early embryonic development. The results we present demonstrate that a combined analysis of genomic DNA and messenger RNA from ultra-low input samples is feasible and can readily be applied to other cellular systems with limited material available.


Assuntos
Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Embrionárias Humanas/metabolismo , RNA Mensageiro/genética , Biomarcadores , Análise por Conglomerados , Perfilação da Expressão Gênica , Genômica/métodos , Células-Tronco Embrionárias Humanas/citologia , Humanos , RNA Mensageiro/metabolismo , Transcriptoma
13.
BMC Genomics ; 16: 84, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25765079

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. RESULTS: In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. CONCLUSIONS: Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder.


Assuntos
Doença de Alzheimer/genética , Redes Reguladoras de Genes , Neurônios/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Benzodiazepinonas/farmacologia , Linhagem Celular , Análise por Conglomerados , Feminino , Fibroblastos/citologia , Redes Reguladoras de Genes/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Doadores de Tecidos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607030

RESUMO

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Assuntos
Síndrome de Cockayne , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
15.
Matrix Biol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851302

RESUMO

Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM). Earlier studies showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulated that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence for shaping the extracellular matrix as well as for recruitment of immune cells to the tumor microenvironment. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.

16.
Antioxidants (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627594

RESUMO

The global increase in the incidence of kidney failure constitutes a major public health problem. Kidney disease is classified into acute and chronic: acute kidney injury (AKI) is associated with an abrupt decline in kidney function and chronic kidney disease (CKD) with chronic renal failure for more than three months. Although both kidney syndromes are multifactorial, inflammation and oxidative stress play major roles in the diversity of processes leading to these kidney malfunctions. Here, we reviewed various publications on medicinal plants with antioxidant and anti-inflammatory properties with the potential to treat and manage kidney-associated diseases in rodent models. Additionally, we conducted a meta-analysis to identify gene signatures and associated biological processes perturbed in human and mouse cells treated with antioxidants such as epigallocatechin gallate (EGCG), the active ingredient in green tea, and the mushroom Ganoderma lucidum (GL) and in kidney disease rodent models. We identified EGCG- and GL-regulated gene signatures linked to metabolism; inflammation (NRG1, E2F1, NFKB1 and JUN); ion signalling; transport; renal processes (SLC12A1 and LOX) and VEGF, ERBB and BDNF signalling. Medicinal plant extracts are proving to be effective for the prevention, management and treatment of kidney-associated diseases; however, more detailed characterisations of their targets are needed to enable more trust in their application in the management of kidney-associated diseases.

17.
PLoS One ; 18(1): e0270380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689432

RESUMO

In order to get a better insight into the timing of WT1 mutant Wilms tumor development, we compared the gene expression profiles of nine established WT1 mutant Wilms tumor cell lines with published data from different kidney cell types during development. Publications describing genes expressed in nephrogenic precursor cells, ureteric bud cells, more mature nephrogenic epithelial cells and interstitial cell types were used. These studies uncovered that the WT1 mutant Wilms tumor cells lines express genes from the earliest nephrogenic progenitor cells, as well as from more differentiated nephron cells with the highest expression from the stromal/interstitial compartment. The expression of genes from all cell compartments points to an early developmental origin of the tumor in a common stem cell. Although variability of the expression of specific genes was evident between the cell lines the overall expression pattern was very similar. This is likely dependent on their different genetic backgrounds with distinct WT1 mutations and the absence/presence of mutant CTNNB1.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Proteínas WT1/genética , Tumor de Wilms/patologia , Rim/patologia , Neoplasias Renais/patologia , Células-Tronco/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Expressão Gênica , Genes do Tumor de Wilms
18.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759499

RESUMO

Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.


Assuntos
Síndrome de Crigler-Najjar , Células-Tronco Pluripotentes Induzidas , Kernicterus , Humanos , Encéfalo , Citocinas , Bilirrubina
19.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766685

RESUMO

Recent demographic studies predict there will be a considerable increase in the number of elderly people within the next few decades. Aging has been recognized as one of the main risk factors for the world's most prevalent diseases such as neurodegenerative disorders, cancer, cardiovascular disease, and metabolic diseases. During the process of aging, a gradual loss of tissue volume and organ function is observed, which is partially caused by replicative senescence. The capacity of cellular proliferation and replicative senescence is tightly regulated by their telomere length. When telomere length is critically shortened with progressive cell division, cells become proliferatively arrested, and DNA damage response and cellular senescence are triggered, whereupon the "Hayflick limit" is attained at this stage. Podocytes are a cell type found in the kidney glomerulus where they have major roles in blood filtration. Mature podocytes are terminal differentiated cells that are unable to undergo cell division in vivo. For this reason, the establishment of primary podocyte cell cultures has been very challenging. In our present study, we present the successful immortalization of a human podocyte progenitor cell line, of which the primary cells were isolated directly from the urine of a 51-year-old male. The immortalized cell line was cultured over the course of one year (~100 passages) with high proliferation capacity, endowed with contact inhibition and P53 expression. Furthermore, by immunofluorescence-based expression and quantitative real-time PCR for the podocyte markers CD2AP, LMX1B, NPHS1, SYNPO and WT1, we confirmed the differentiation capacity of the immortalized cells. Finally, we evaluated and confirmed the responsiveness of the immortalized cells on the main mediator angiotensin II (ANGII) of the renin-angiotensin system (RAAS). In conclusion, we have shown that it is possible to bypass cellular replicative senescence (Hayflick limit) by TERT-driven immortalization of human urine-derived pre-podocyte cells from a 51-year-old African male.


Assuntos
Angiotensina II , Sistema Renina-Angiotensina , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Angiotensina II/farmacologia , Linhagem Celular , Células Cultivadas , Senescência Celular/genética
20.
Cells ; 12(17)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37681928

RESUMO

With a global increase in chronic kidney disease patients, alternatives to dialysis and organ transplantation are needed. Stem cell-based therapies could be one possibility to treat chronic kidney disease. Here, we used multipotent urine-derived renal progenitor cells (UdRPCs) to study nephrogenesis. UdRPCs treated with the JNK inhibitor-AEG3482 displayed decreased proliferation and downregulated transcription of cell cycle-associated genes as well as the kidney progenitor markers-SIX2, SALL1 and VCAM1. In addition, levels of activated SMAD2/3, which is associated with the maintenance of self-renewal in UdRPCs, were decreased. JNK inhibition resulted in less efficient oxidative phosphorylation and more lipid peroxidation via ferroptosis, an iron-dependent non-apoptotic cell death pathway linked to various forms of kidney disease. Our study is the first to describe the importance of JNK signalling as a link between maintenance of self-renewal and protection against ferroptosis in SIX2-positive renal progenitor cells.


Assuntos
Ferroptose , Sistema de Sinalização das MAP Quinases , Insuficiência Renal Crônica , Humanos , Rim , Diálise Renal , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA