Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(10): 379, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167328

RESUMO

In recent years, the prevalence and danger of organophosphorus flame retardants (OPFRs) have drawn attention from all around the world. This study examined twenty-five OPFRs observed in water and sediment samples from the Qiantang River in eastern China, as well as their occurrence, spatial distribution, possible origins, and ecological hazards. All the 25 OPFRs were detected in water and sediment samples. The levels of Σ25OPFRs in water and sediment were 35.5-192 ng/L and 8.84-48.5 ng/g dw, respectively. Chlorinated OPFRs were the main contributions in water, whereas alkyl-OPFRs were the most common congeners found in sediment. Spatial analysis revealed that sample locations in neighboring cities had somewhat higher water concentrations of OPFRs. Slowing down the river current and making the reservoir the main sink of OPFRs, the dam can prevent OPFRs from moving via the Qiantang River. Positive matrix factorization indicated that plasticizer in polyvinyl chloride, polyester resins, and polyurethane foam made the greatest contributions in water, whereas polyurethane foam and textile were the predominant source in sediment. Analysis of sediment-water exchange of OPFRs showed that twelve OPFRs in sediments can re-enter into the water body. The risk quotients showed the ecological risk was low to medium, but trixylyl phosphate exposures posed high ecological risk to aquatic organisms.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Sedimentos Geológicos , Compostos Organofosforados , Rios , Poluentes Químicos da Água , Retardadores de Chama/análise , China , Rios/química , Medição de Risco , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Compostos Organofosforados/análise
2.
Microb Pathog ; 156: 104926, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33964419

RESUMO

Mounting evidence revealed the negative effects of abuse of antibiotic including the induction of decreased immunity and dysbacteriosis. Matrine displayed multiple beneficial effects such as anti-inflammatory, antiviral and antibacterial, but studies of its influence on gut microbiota are still insufficient to report. Here, the present study was conducted to investigate the influence of matrine on the gut microbiota of mice and amoxicillin was used as a positive control. A total of 21 cecal samples were obtained from seven groups for high-throughput sequencing analysis based on V3-V4 variable region of 16S rRNA genes. Results revealed that the diversity and abundance of gut microbiota in mice gradually decreased with the increase of the concentration of amoxicillin, whereas matrine administration did not effect the intestinal microbial community structure. Additionally, amoxicillin and matrine supplementation also caused significant changes in the relative abundance of some intestinal bacteria. Specifically, the ratio of Klebsiella and Corynebacterium_1, Bacteroides and Parasutterella in the amoxicillin treated-group were increased as compared to the control group, whereas Muribaculaceae_unclassified, Alistipes and Lactobacillus were significantly decreased. Conversely, matrine administration significantly increased the proportion of beneficial bacteria such as Ruminiclostridium_9, Lachnospiraceae_NK4A136_group and Ruminococcaceae_unclassified. In conclusion, amoxicillin administration could change the microbial community composition and structure by increasing the proportion of pathogenic to beneficial bacteria, whereas matrine could increase the number of beneficial bacteria. Moreover, this study provides a theoretical basis for finding alternatives to antibiotics to decrease bacterial resistance and intestinal flora imbalance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Alcaloides , Animais , Camundongos , Quinolizinas/farmacologia , RNA Ribossômico 16S/genética , Matrinas
3.
Small ; 16(39): e2003654, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32875740

RESUMO

Intrinsically fluorescent poly(amidoamine) dendrimers (IF-PAMAM) are an emerging class of versatile nanoplatforms for in vitro tracking and bio-imaging. However, limited tissue penetration of their fluorescence and interference due to auto-fluorescence arising from biological tissues limit its application in vivo. Herein, a green IF-PAMAM (FGP) dendrimer is reported and its biocompatibility, circulation, biodistribution and potential role for traceable central nervous system (CNS)-targeted delivery in zebrafish is evaluated, exploring various routes of administration. Key features of FGP include visible light excitation (488 nm), high fluorescence signal intensity, superior photostability and low interference from tissue auto-fluorescence. After intravenous injection, FGP shows excellent imaging and tracking performance in zebrafish. Further conjugating FGP with transferrin (FGP-Tf) significantly increases its penetration through the blood-brain barrier (BBB) and prolongs its circulation in the blood stream. When administering through local intratissue microinjection, including intracranial and intrathecal injection in zebrafish, both FGP and FGP-Tf exhibit excellent tissue diffusion and effective cellular uptake in the brain and spinal cord, respectively. This makes FGP/FGP-Tf attractive for in vivo tracing when transporting to the CNS is desired. The work addresses some of the major shortcomings in IF-PAMAM and provides a promising application of these probes in the development of drug delivery in the CNS.


Assuntos
Sistema Nervoso Central , Dendrímeros , Sistemas de Liberação de Medicamentos , Poliaminas , Animais , Sistema Nervoso Central/diagnóstico por imagem , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes/química , Poliaminas/química , Distribuição Tecidual , Peixe-Zebra/metabolismo
4.
Angew Chem Int Ed Engl ; 58(15): 4938-4942, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737876

RESUMO

Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co-delivery of siRNAs, which avoid the problem of cation-associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)-based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal- and intracellular-reduction-sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co-delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction-responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti-P-glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , RNA Interferente Pequeno/química , Antibióticos Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 132-142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29133280

RESUMO

Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/ß-catenin signaling to promote adipogenesis.


Assuntos
Adipogenia/fisiologia , Loci Gênicos , Histonas/metabolismo , Metionina Adenosiltransferase/metabolismo , Elementos de Resposta , Proteínas Wnt/metabolismo , Animais , Histonas/genética , Metionina Adenosiltransferase/genética , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Wnt/genética
6.
Mol Cell Probes ; 28(5-6): 264-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25044282

RESUMO

The objective of this study was to develop a multiplex real-time PCR panel using TaqMan probes for the detection and differentiation of porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus North American type (PRRSV-NA), pseudorabies virus (PRV), classical swine fever virus (CSFV), porcine parvovirus type 1 (PPV1) and Japanese encephalitis virus (JEV). Specific primer and probe combinations for PCV2, PRRSV, PRV, CSFV, PPV1 and JEV were selected within the conserved region of each viral genome. The multiplex real-time PCR panel which was run in two separate tubes was capable of specific detection of the six selected pig viruses, without cross-reactions with other non-targeted pig viruses. The detection limit of the assays was 10 copies/µL for PCV2, PRV, CSFV and PRRSV and 100 copies/µL for PPV and JEV. The two-tube multiplex real-time PCR panel showed 99.2% concordance with conventional PCR assays on 118 field samples. Overall, the multiplex real-time PCR panel provides a fast, specific, and sensitive diagnostic tool for detection of multiple viral pathogens in pigs and will be useful not only for diagnostics, or ecological, epidemiological and pathogenesis studies, but also for investigating host/virus or virus/virus interactions, particularly during coinfections.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Doenças dos Suínos/diagnóstico , Vírus/genética , Animais , Interações Hospedeiro-Patógeno , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Suínos , Doenças dos Suínos/virologia , Vírus/classificação
7.
Virology ; 593: 110026, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373360

RESUMO

Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Vacinas Virais , Animais , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2
8.
iScience ; 27(3): 109197, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433902

RESUMO

Magnesium alloy is an excellent material for biodegradable cerebrovascular stents. However, the rapid degradation rate of magnesium alloy will make stent unstable. To improve the biocompatibility of magnesium alloy, in this study, biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) was used to coat onto hydrothermally treated the surface of magnesium alloy by a dipping coating method. The results show that the SA/CMCS coating facilitates the growth, proliferation, and migration of endothelial cells and promotes neovascularization. Moreover, the SA/CMCS coating suppresses macrophage activation while promoting their transformation into M2 type macrophages. Overall, the SA/CMCS coating demonstrates positive effects on the safety and biocompatibility of magnesium alloy after implantation, and provide a promising therapy for the treatment of intracranial atherosclerotic stenosis in the future.

9.
Arch Virol ; 158(2): 379-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23053522

RESUMO

SYBR Green I (SG) is widely used in real-time PCR applications as an intercalating dye. Preferential binding of SG during PCR and inhibition of PCR often result in failure to detect multiple amplicons in multiplex reactions. In the present study, a novel single-tube, multiplex real-time PCR with EvaGreen dye (EG) was developed and evaluated for simultaneous detection of pathogenic targets by using five potato viruses as models. The PCR products obtained using five sets of specific primers were analyzed by melting curve analysis. The assay could specifically detect and differentiate the five potato viruses by producing a distinct peak for each amplification product and exhibited a high reproducibility with coefficients of variation from 0.01 to 0.25 %. Detection sensitivity of the assay ranged from 100 to 500 copies/µL for each virus. The results of this study demonstrate that multiplex real-time PCR and melting-curve analysis with EG is a sensitive, specific and inexpensive method for simultaneous detection of multiple pathogens.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Vírus de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Virologia/métodos , Primers do DNA/genética , Corantes Fluorescentes/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solanum tuberosum/virologia , Coloração e Rotulagem/métodos , Temperatura de Transição
10.
Poult Sci ; 102(10): 102713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540950

RESUMO

The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.


Assuntos
Antioxidantes , Microbiota , Masculino , Animais , Antioxidantes/metabolismo , Proteínas de Choque Térmico/metabolismo , Meliteno/metabolismo , Codorniz/genética , Galinhas/genética , Dieta/veterinária , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro/genética , Imunidade , Suplementos Nutricionais/análise , Ração Animal/análise
11.
Theriogenology ; 210: 84-93, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481978

RESUMO

Preservation of ovarian tissues is an effective way to ensure genetic diversity of susceptible natural bird populations that are in danger of extinction. We examined whether the addition of the plant phenol resveratrol to vitrification solutions ameliorates the damaging effects of tissue hypoxia and reperfusion injury when the tissues are transplanted. Duck ovary tissues were frozen in the presence of varying concentrations of resveratrol in cryopreservation solutions and then transplanted under the renal capsules of 2-day-old Shelducks. Samples of the transplanted tissues were examined on days 3- and 9- post transplantation for activation of hypoxia-, antioxidant- and apoptosis-related gene expression and apoptosis. Resveratrol significantly increased expression of VEGF, HIF-1α, Nrf2, CAT and Bcl-2 mRNA and decreased BAX and Caspase-3 mRNA and reduced numbers of TUNEL-positive cells after vitrification and heterotopic ovarian transplantation. Resveratrol improved the antioxidant capacity, reduced apoptosis and activated the HIF-1α/VEGF pathway to promote angiogenesis 3- and 9-days following transplantation. These results indicated that the addition of resveratrol to vitrification solutions intended for long-term cryopreservation of ovary tissues improves survival in storage and the grafts following transplantation. This study provides a theoretical basis for the successful transplantation of avian ovarian tissue after vitrification.


Assuntos
Patos , Ovário , Feminino , Animais , Ovário/transplante , Resveratrol/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antioxidantes/farmacologia , Criopreservação/veterinária , Criopreservação/métodos , Vitrificação , Apoptose
12.
Front Oncol ; 13: 1287797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023173

RESUMO

Introduction: Signal transducer and activator of transcription 3 (STAT3) is ubiquitously hyper-activated in numerous cancers, rendering it an appealing target for therapeutic intervention. Methods and results: In this study, using structure-based virtual screening complemented by molecular dynamics simulations, we identified ten potential STAT3 inhibitors. The simulations pinpointed compounds 8, 9, and 10 as forming distinct hydrogen bonds with the SH2 domain of STAT3. In vitro cytotoxicity assays highlighted compound 4 as a potent inhibitor of gastric cancer cell proliferation across MGC803, KATO III, and NCI-N87 cell lines. Further cellular assays substantiated the ability of compound 4 to attenuate IL-6-mediated STAT3 phosphorylation at Tyr475. Additionally, oxygen consumption rate assays corroborated compound 4's deleterious effects on mitochondrial function. Discussion: Collectively, our findings position compound 4 as a promising lead candidate warranting further exploration in the development of anti-gastric cancer therapeutics.

13.
Poult Sci ; 102(2): 102355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502563

RESUMO

To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and ß diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.


Assuntos
Antioxidantes , Codorniz , Animais , Antioxidantes/metabolismo , Codorniz/metabolismo , Meliteno/farmacologia , Galinhas/metabolismo , Óvulo/metabolismo , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais/análise
14.
Adv Sci (Weinh) ; 10(13): e2206333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869410

RESUMO

Near-infrared-II (NIR-II) ferroptosis activators offer promising potentials in in vivo theranostics of deep tumors, such as glioma. However, most cases are nonvisual iron-based systems that are blind for in vivo precise theranostic study. Additionally, the iron species and their associated nonspecific activations might trigger undesired detrimental effects on normal cells. Considering gold (Au) is an essential cofactor for life and it can specifically bind to tumor cells, Au(I)-based NIR-II ferroptosis nanoparticles (TBTP-Au NPs) for brain-targeted orthotopic glioblastoma theranostics are innovatively constructed. It achieves the real-time visual monitoring of both the BBB penetration and the glioblastoma targeting processes. Moreover, it is first validated that the released TBTP-Au specifically activates the effective heme oxygenase-1-regulated ferroptosis of glioma cells to greatly extend the survival time of glioma-bearing mice. This new ferroptosis mechanism based on Au(I) may open a new way for the fabrication of advanced and high-specificity visual anticancer drugs for clinical trials.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Glioma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Linhagem Celular Tumoral , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Ferro
15.
Nat Commun ; 14(1): 1578, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949068

RESUMO

Diffuse infiltration is the main reason for therapeutic resistance and recurrence in glioblastoma (GBM). However, potential targeted therapies for GBM stem-like cell (GSC) which is responsible for GBM invasion are limited. Herein, we report Insulin-like Growth Factor-Binding Protein 5 (IGFBP5) is a ligand for Receptor tyrosine kinase like Orphan Receptor 1 (ROR1), as a promising target for GSC invasion. Using a GSC-derived brain tumor model, GSCs were characterized into invasive or non-invasive subtypes, and RNA sequencing analysis revealed that IGFBP5 was differentially expressed between these two subtypes. GSC invasion capacity was inhibited by IGFBP5 knockdown and enhanced by IGFBP5 overexpression both in vitro and in vivo, particularly in a patient-derived xenograft model. IGFBP5 binds to ROR1 and facilitates ROR1/HER2 heterodimer formation, followed by inducing CREB-mediated ETV5 and FBXW9 expression, thereby promoting GSC invasion and tumorigenesis. Importantly, using a tumor-specific targeting and penetrating nanocapsule-mediated delivery of CRISPR/Cas9-based IGFBP5 gene editing significantly suppressed GSC invasion and downstream gene expression, and prolonged the survival of orthotopic tumor-bearing mice. Collectively, our data reveal that IGFBP5-ROR1/HER2-CREB signaling axis as a potential GBM therapeutic target.


Assuntos
Glioblastoma , Humanos , Células HEK293 , Ligantes , Glioblastoma/metabolismo , Transdução de Sinais , Animais , Camundongos , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomolecules ; 12(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36008975

RESUMO

Colon adenocarcinoma is one of the tumors with the highest mortality rate, and tumorigenesis or development of colon adenocarcinoma is the major reason leading to patient death. However, the molecular mechanism and biomarker to predict tumor progression are currently unclear. With the goal of understanding the molecular mechanism and tumor progression, we utilized the TCGA database to identify differentially expressed genes. After identifying the differentially expressed genes among colon adenocarcinoma tissues with different expression levels of LGR4 and normal tissue, protein-protein interaction, gene ontology, pathway enrichment, gene set enrichment analysis, and immune cell infiltration analysis were conducted. Here, the top 10 hub genes, i.e., ALB, F2, APOA2, CYP1A1, SPRR2B, APOA1, APOB, CYP3A4, SST, and GCG, were identified, and relative correlation analysis was conducted. Kaplan-Meier analysis revealed that higher expression of LGR4 correlates with overall survival of colon adenocarcinoma patients, although expression levels of LGR4 in normal tissues are higher than in tumor tissues. Further functional analysis demonstrated that higher expression of LGR4 in colon adenocarcinoma may be linked to up-regulate metabolism-related pathways, for example, the cholesterol biosynthesis pathway. These results were confirmed by gene set enrichment analysis. Immune cell infiltration analysis clearly showed that the infiltration percentage of T cells was significantly higher than other immune cells, and TIMER analysis revealed a positive correlation between T-cell infiltration and LGR4 expression. Finally, COAD cancer cells, Caco-2, were employed to be incubated with squalene and 25-hydroxycholesterol-3-sulfate, and relative experimental results confirmed that the cholesterol biosynthesis pathway involved in modulating the proliferation of COAD tumorigenesis. Our investigation revealed that LGR4 can be an emerging diagnostic and prognostic biomarker for colon adenocarcinoma by affecting metabolism-related pathways.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Receptores Acoplados a Proteínas G , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células CACO-2 , Carcinogênese/genética , Colesterol , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
17.
Biomolecules ; 12(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36291598

RESUMO

Research has proven that light treatment, specifically red light radiation, can provide more clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure. RNA sequencing results revealed that light exposure with a higher intervention dosage could cause a number of differentially expressed genes compared with a low intervention dosage. Gene ontology analysis, protein-protein interaction network analysis, and gene set enrichment analysis results suggested that 660 nm light exposure can activate more transcription-related pathways in HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized that this pathway might play a major role in response to 660 nm light exposure. To validate our hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and relative results corroborated that laser radiation could promote expression levels of ß-catenin and relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that 660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings suggest that the Wnt/ß-catenin pathway may be the major sensor for 660 nm laser radiation, and it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative interventional agents.


Assuntos
Metabolismo dos Lipídeos , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Epitélio/metabolismo , Lasers , Nucleotídeos/metabolismo , Purinas/metabolismo
18.
ACS Appl Mater Interfaces ; 14(32): 36487-36502, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921662

RESUMO

Glioblastoma (GBM) has a distinct internal environment characterized by high levels of glutathione (GSH) and low oxygen partial pressure, which significantly restrict most drugs' effectiveness. Arsenic-based drugs are emerging candidates for treating solid tumors; however, relatively high doses in solo systems and inconsistent complementary systems severely damage the normal tissues. We proposed a novel covalently conjugated strategy for arsenic-based therapy via arsenic-boronic acid complex formation. The boronic acid was modified on silver (AgL) to capture AsV under an alkaline condition named arsenate plasmonic complex (APC) with a distinct Raman response. The APC can precisely release the captured AsV in lysosomal acidic pH that specifically targets TME to initiate a multimodal therapeutic effect such as GSH depletion and reactive oxygen species generation. In addition, GSH activation leads to subconverted AsV into AsIII, which further facilitated glutathione peroxidase (GPx) and superoxide dismutase inhibition, whereas the tumor selective etching of the silver core triggered by endogenous H2O2 that can oxidize to generate highly toxic Ag ions produces and supplies O2 to help the alleviated hypoxia. Both in vitro and in vivo data verify the APC-based chemotherapy paving the way for efficient nanomedicine-enabled boronate affinity-based arsenic chemotherapeutics for on demand site-specific cancer combination treatment of GBM tumors.


Assuntos
Arsênio , Glioblastoma , Pró-Fármacos , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glutationa/química , Humanos , Peróxido de Hidrogênio , Pró-Fármacos/farmacologia , Prata , Microambiente Tumoral
19.
Front Oncol ; 11: 731414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881175

RESUMO

Blood vessels in the brain tissue form a compact vessel structure and play an essential role in maintaining the homeostasis of the neurovascular system. The low dosage of photodynamic intervention (PDT) significantly affects the expression of cellular biomarkers. To understand the impact of photodynamic interventions on cerebrovascular endothelial cells, we evaluated the dosage-dependent impact of porfimer sodium-mediated PDT on B.END3 cells using flow cytometer, comet assay, RNA sequencing, and bioinformatics analysis. To examine whether PDT can induce disorder of intracellular organelles, we did not observe any significance damage of DNA and cellular skeleton. Moreover, expression levels of cellular transporters-related genes were significantly altered, implying the drawbacks of PDT on cerebrovascular functions. To address the potential molecular mechanisms of these phenotypes, RNA sequencing and bioinformatics analysis were employed to identify critical genes and pathways among these processes. The gene ontology (GO) analysis and protein-protein interaction (PPI) identified 15 hub genes, highly associated with cellular mitosis process (CDK1, CDC20, MCM5, MCM7, MCM4, CCNA2, AURKB, KIF2C, ESPL1, BUB1B) and DNA replication (POLE2, PLOE, CDC45, CDC6). Gene set enrichment analysis (GSEA) reveals that TNF-α/NF-κB and KRAS pathways may play a critical role in regulating expression levels of transporter-related genes. To further perform qRT-PCR assays, we find that TNF-α/NF-κB and KRAS pathways were substantially up-regulated, consistent with GSEA analysis. The current findings suggested that a low dosage of PDT intervention may be detrimental to the homeostasis of blood-brain barrier (BBB) by inducing the inflammatory response and affecting the expression of surface biomarkers.

20.
Front Vet Sci ; 8: 702885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485430

RESUMO

The intestinal flora is a micro-ecosystem that is closely linked to the overall health of the host. We examined the diversity and abundance of intestinal microorganisms in mice following the administration of andrographolide, a component of the Chinese medical herb Andrographis paniculata. Administration of andrographolide produces multiple beneficial effects including anti-inflammatory, antiviral and antibacterial effects but whether it directly influences the gut microbiota is not known. This study investigated whether the oral administration of andrographolide influences the intestinal microbiota and was compared with amoxicillin treatment as a positive control and water only as a negative control. We examined 21 cecal samples and conducted a high-throughput sequencing analysis based on V3-V4 variable region of the 16S rDNA genes. We found that the diversity and abundance of mouse gut microbiota decreased in direct proportion with the amoxicillin dose whereas andrographolide administration did not affect intestinal microbial community structure. The composition of intestinal microbes following andrographolide treatment was dominated by the Firmicutes while Bacteroidetes dominated the amoxicillin treatment group compared with the negative controls. Specifically, the f__Lachnospiraceae_ Unclassified, Lachnospiraceae_ NK4A136_group and Ruminococcaceae_ UCG-014 were enriched with andrographolide administration while Bacteroides, Klebsiella and Escherichia-Shigella significantly increased in the amoxicillin test groups. Amoxicillin administration altered the microbial community composition and structure by increasing the proportion of pathogenic to beneficial bacteria whereas andrographolide administration led to increases in the proportions and abundance of beneficial bacteria. This study provides a theoretical basis for finding alternatives to antibiotics to decrease bacterial resistance and restore intestinal floral imbalances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA