Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 48(6): 1737-1754, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36670238

RESUMO

Major depressive disorder (MDD) refers to a widespread psychiatric disorder. Astrocytes play a pivotal role in regulating inflammation which is a well-acknowledged key component in depression pathogenesis. However, the effects of the neuroinflammation-inducing A1-like astrocytes on MDD are still unknown. TWIK-related K+ channel 1 (TREK-1) has been demonstrated to regulate the action of antidepressants. Nevertheless, its mechanisms and effects on A1-like astrocyte stimulation in MDD are not clear. Therefore, we conducted in vivo and in vitro experiments using TREK-1 specific inhibitor spadin. In vivo, rats were subjected to a 6-week chronic unpredictable mild stress (CUMS) followed by spadin treatment. Behavioral tests were employed to surveil depressive-like behaviors. Hippocampal proteomic analysis was carried out with the purpose of identifying differentially expressed proteins after CUMS and spadin treatments. In vitro, astrocyte-conditioned medium and spadin were used to treat rat astrocyte cell line. The activated microglia, inflammatory factors, A1 astrocyte markers, and activated nuclear factor kappa B (NF-κB) pathway were later analyzed using immunofluorescence, western blot, and RT-qPCR. Our findings indicated that blockage of TREK-1 reduced CUMS-induced depressive-like behavior in rats, inhibited the microglial stimulation, reduced inflammatory factor levels, and suppressed the activation of A1-like reactive astrocytes in the hippocampus. We also verified that the suppression of A1-like astrocytes by spadin necessitated the NF-κB pathway. According to the findings, blocking TREK-1 inhibited the activation of A1-like reactive astrocytes via the NF-κB signaling pathway in MDD. Our study preliminarily identifies a novel antidepressant mechanism of TREK-1 action and provides a therapeutic path for MDD.


Assuntos
Transtorno Depressivo Maior , Canais de Potássio de Domínios Poros em Tandem , Ratos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , NF-kappa B/metabolismo , Astrócitos/metabolismo , Potássio/metabolismo , Proteômica , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transdução de Sinais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Estresse Psicológico/metabolismo , Hipocampo/metabolismo
2.
Biochem Biophys Res Commun ; 602: 135-141, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35272143

RESUMO

Between 30% and 50% of survivors of cardiac arrest (CA) suffer from cognitive deficits. However, no effective medical intervention is available to alleviate cognitive deficits. Baclofen is known to protect damaged neurons, but researchers have still not clearly whether baclofen alleviates CA-induced cognitive deficits. The present study aimed to investigate whether baclofen protects against post-CA cognitive deficits and to reveal the protective mechanism of baclofen. Rats underwent 10 min of asphyxia to establish CA models. Intriguingly, our results indicated that baclofen improved spatial memory 72 h after CA. Baclofen increased plasticity-related protein (PSD95, and GAP43) expression in the brain after CA. Baclofen reduced microglial number and the release of inflammatory factors (IL-1ß and IL-18). Furthermore, baclofen significantly reduced the expression of pyroptosis-related molecules after CA. Notably, activation of NLRP3 abolished the anti-pyroptosis effect of baclofen and reduced the expression of synaptic plasticity-related proteins after CA. Taken together, this study first shows that baclofen attenuates cognitive deficits induced by brain injury after CA. The mechanism is at least partially attributed to baclofen regulating pyroptosis by inhibition of NLRP3 activation.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Animais , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Cognição , Parada Cardíaca/complicações , Parada Cardíaca/tratamento farmacológico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Ratos , Ratos Sprague-Dawley
3.
Neuroscience ; 526: 97-106, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37352966

RESUMO

Brain injury is a major cause of death and disability after cardiac arrest (CA). Previous studies have shown that activating GABAB receptors significantly improves neurological function after CA, but the mechanism of this neuronal protection of damaged neurons remains unclear. Thus, the present study aimed to investigate whether GABAB receptor activation protects against neuronal injury and to reveal the underlying protective mechanisms. In this study, rats underwent 10 min of asphyxia to induce CA, and SH-SY5Y cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to establish in vivo and in vitro models of hypoxic neuronal injury. Differential gene expression between CA rats and sham-operated rats was identified using RNA-seq. TUNEL and Nissl staining were used to evaluate cortical neuron damage, while Western blotting, qRT-PCR, and immunofluorescence assays were conducted to measure pyroptosis-related indicators. Furthermore, cellular models with high expression of caspase-11 were established to reveal the novel molecular mechanisms by which GABAB receptor activation exerts neuroprotective effects. Intriguingly, our results showed that caspase-11 and GSDMD were highly expressed in rats experiencing cardiac arrest. Specifically, GSDMD was expressed in neurons in the M1 area of the cerebral cortex. Moreover, activation of the GABAB receptor exerted a protective effect on neurons both in vivo and in vitro. Baclofen attenuated caspase-11 activation and neuronal pyroptosis after CA, and the anti-neuronal pyroptosis effect of baclofen was abolished by overexpression of caspase-11 in neuronal cells. In conclusion, GABAB receptor activation may play a neuroprotective role by alleviating neuronal pyroptosis through a mechanism involving caspase-11.


Assuntos
Lesões Encefálicas , Neuroblastoma , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Piroptose/fisiologia , Baclofeno/farmacologia , Neuroblastoma/metabolismo , Neurônios/metabolismo , Lesões Encefálicas/metabolismo , Caspases/metabolismo , Traumatismo por Reperfusão/metabolismo
4.
Front Genet ; 13: 702366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559009

RESUMO

Background: Major depressive disorder (MDD) is a serious mental illness characterized by mood changes and high suicide rates. However, no studies are available to support a blood test method for MDD diagnosis. The objective of this research was to identify potential peripheral blood biomarkers for MDD and characterize the novel pathophysiology. Methods: We accessed whole blood microarray sequencing data for MDD and control samples from public databases. Biological functions were analysed by GO and KEGG pathway enrichment analyses using the clusterprofile R package. Infiltrated immune cell (IIC) proportions were identified using the CIBERSORT algorithm. Clustering was performed using the ConsensusClusterPlus R package. Protein-protein interactions (PPI) were assessed by constructing a PPI network using STRING and visualized using Cytoscape software. Rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks to induce stress behaviour. Stress behaviour was evaluated by open field experiments and forced swimming tests. Flow cytometry was used to analyse the proportion of CD8+ T cells. The expression of the corresponding key genes was detected by qRT-PCR. Results: We divided MDD patients into CD8H and CD8L clusters. The functional enrichment of marker genes in the CD8H cluster indicated that autophagy-related terms and pathways were significantly enriched. Furthermore, we obtained 110 autophagy-related marker genes (ARMGs) in the CD8H cluster through intersection analysis. GO and KEGG analyses further showed that these ARMGs may regulate a variety of autophagy processes and be involved in the onset and advancement of MDD. Finally, 10 key ARMGs were identified through PPI analysis: RAB1A, GNAI3, VAMP7, RAB33B, MYC, LAMP2, RAB11A, HIF1A, KIF5B, and PTEN. In the CUMS model, flow cytometric analysis confirmed the above findings. qRT-PCR revealed significant decreases in the mRNA levels of Gnai3, Rab33b, Lamp2, and Kif5b in the CUMS groups. Conclusion: In this study, MDD was divided into two subtypes. We combined immune infiltrating CD8+ T cells with autophagy-related genes and screened a total of 10 ARMG genes. In particular, RAB1A, GNAI3, RAB33B, LAMP2, and KIF5B were first reported in MDD. These genes may offer new hope for the clinical diagnosis of MDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA