Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; : e202401333, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779790

RESUMO

Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20 bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.

2.
ACS Pharmacol Transl Sci ; 6(10): 1508-1517, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854615

RESUMO

Cisplatin (DDP) is a first-line chemotherapeutic drug against lung cancer. Nonetheless, the effectiveness of this drug is hampered by drug resistance. Overcoming drug resistance is crucial for improving the outcomes of lung cancer treatment. Here, we reported the effect of CX-23, an activated triptolide analogue that targets NAD (P)H quinone dehydrogenase 1 (NQO1), on DDP-resistant lung cancer and sensitizes DDP-resistant lung cancer to chemotherapy. Our findings unveiled the antiproliferative activity of CX-23 against both A549- and DDP-resistant A549 (A549/DDP) cells while enhancing the chemosensitivity of these cells to DDP. Notably, CX-23 demonstrated no toxicity toward normal lung cells. Further investigations revealed that CX-23 exerts its effects by blocking AKT phosphorylation, leading to reduced expression of Mcl-1 and Bcl-2, and upregulating cleaved-caspase-3 levels, ultimately inducing apoptosis in cancer cells. CX-23 can be rapidly transformed in both A549 and A549/DDP cell lysates while remaining stable in mouse plasma and normal lung tissues. Pharmacokinetic analysis showed that CX-23 can distribute to lung tissues. Moreover, in vivo studies showed that CX-23 can prevent DDP-resistant lung cancer progression without causing any toxicity in the liver, kidneys, or lungs after 6 weeks of treatment. The combination of CX-23 and DDP not only significantly inhibited tumor progression compared to DDP alone but also attenuated DDP-induced kidney toxicity. These findings suggest that CX-23 alone or in combination with DDP may provide an alternative therapeutic option for DDP-resistant lung cancer.

3.
Front Pharmacol ; 13: 1050630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339630

RESUMO

Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.

4.
Biomed Res Int ; 2022: 3742447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757472

RESUMO

Glioma is one of the most common intracranial malignancies that plagues people around the world. Despite current improvements in treatment, the prognosis of glioma is often unsatisfactory. Necroptosis is a form of programmed cell death. As research progresses, the role of necroptosis in tumors has gradually attracted the attention of researchers. And lncRNA is regarded as a critical role in the development of cancer. Therefore, this study is aimed at establishing a prognostic model based on necroptosis-associated lncRNAs to accurately assess the prognosis and immune response of patients with glioma. The RNA sequences of glioma patients and normal brain samples were downloaded from The Cancer Genome Atlas (TCGA) and GTEx databases, respectively. The coexpression analysis was performed to identify the necroptosis-related lncRNAs. Then, we utilized LASSO analysis following univariate Cox analysis to construct a prognostic model. Subsequently, we applied the Kaplan-Meier curve, time-dependent receiver operating characteristics (ROC), and univariate and multivariate Cox regression analyses to assess the effectiveness of this model. And the functional enrichment analyses and immune-related analyses were employed to investigate the potential biological functions. A validation set was obtained from the Chinese Glioma Genome Atlas (CGGA) database. And qRT-PCR was employed to further validate the expression levels of selected necroptosis-associated lncRNAs. Seven necroptosis-related lncRNAs (FAM13A-AS1, JMJD1C-AS1, LBX2-AS1, ZBTB20-AS4, HAR1A, SNHG14, and LINC00900) were determined to construct a prognostic model. The area under the ROC curve (AUC) was 0.871, 0.901, and 0.911 at 1, 2, and 3 years, respectively. The risk score was shown to be an important independent predictor in both univariate and multivariate Cox regression analyses. Through functional enrichment analyses, we found that the differentially expressed genes (DEGs) were mainly enriched in protein binding and signaling-related biological functions and immune-associated pathways. In conclusion, we established and validated a novel necroptosis-related lncRNA signature, which could accurately predict the overall survival of glioma patients and serve as potential therapeutic targets.


Assuntos
Glioma , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Imunidade , Histona Desmetilases com o Domínio Jumonji/genética , Estimativa de Kaplan-Meier , Necroptose/genética , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Prognóstico , RNA Longo não Codificante/metabolismo
5.
J Biophotonics ; 15(5): e202200006, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072357

RESUMO

Mitochondrion is one of significant organelles inside cells because it serves as a hub for energy management and intracellular signaling. Internal/external damages on mitochondria would lead to mitochondrial stresses with the malfunctions, accompanying with the changes of morphological structure and abnormal local environments (pH values). Mitophagy is capable of degradation of damaged mitochondrial segments to restore its normal metabolism, dynamics, and biogenesis. The dynamic structural visualization and pH quantification can be helpful for the understanding of mitochondrial functions as well as the diagnosis of disorders linking with this process. In this work, we use confocal laser scanning microscopy, STED super-resolution nanoscopy and fluorescence lifetime imaging microscopy, in conjunction with a mitochondrial probe to image the dynamic changes in the mitochondrial morphology and microenvironmental pH values during mitophagy in live cells, in particular, the structural changes of mitochondrial cristae beyond optical diffraction can be distinguished by STED nanoscopy with/without treatment by CCCP, which will provide a new view for the diagnosis and personalized treatment of mitochondrial dysfunction-related diseases.


Assuntos
Mitocôndrias , Mitofagia , Microscopia Confocal , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Membranas Mitocondriais
6.
Front Cell Dev Biol ; 8: 587961, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117816

RESUMO

The marine bacterium Vibrio vulnificus causes potentially fatal bloodstream infections, typically in patients with chronic liver diseases. The inflammatory response and anti-bacterial function of phagocytes are crucial for limiting bacterial infection in the human hosts. How V. vulnificus affects macrophages after phagocytosis is unclear. In this report, we found that the bactericidal activity of macrophages to internalize V. vulnificus was dependent on mammalian target of rapamycin (mTOR) and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) interaction. Additionally, the NLRP3 expression was dependent on mTORC1 activation. Inhibited mTORC1 or absence of NLRP3 in macrophages impaired V. vulnificus-induced phagosome acidification and phagolysosome formation, leading to a reduction of intracellular bacterial clearance. mTORC1 signaling overactivation could increase NLRP3 expression and restore insufficient phagosome acidification. Together, these findings indicate that the intracellular bactericidal activity of macrophages responding to V. vulnificus infection is tightly controlled by the crosstalk of NLRP3 and mTOR and provide critical insight into the host bactericidal activity basis of clearance of V. vulnificus through lyso/phagosome.

7.
Front Cell Infect Microbiol ; 10: 596609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585271

RESUMO

Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly fatal infection in humans. Proper polarization and bactericidal activity of macrophages play essential roles in defending against invading pathogens. How macrophages limit V. vulnificus infection remains not well understood. Here we report that tuberous sclerosis complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1 in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V. vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V. vulnificus infection causes cell death of macrophages, possibly contributes to defective of bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings highlight an essential role for the TSC1-mTOR signaling in the regulation of innate immunity against V. vulnificus infection.


Assuntos
Esclerose Tuberosa , Vibrioses , Animais , Macrófagos , Camundongos , Proteína 1 do Complexo Esclerose Tuberosa
8.
Comput Intell Neurosci ; 2017: 9269742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255297

RESUMO

Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.


Assuntos
Algoritmos , Desenho de Equipamento , Redes Neurais de Computação , Simulação por Computador , Navios
9.
Comput Intell Neurosci ; 2016: 3810903, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819582

RESUMO

Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.


Assuntos
Algoritmos , Inteligência Artificial , Sistemas Homem-Máquina , Robótica , Humanos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA