Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 122(7): 931-942, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31992854

RESUMO

The tumour microenvironment (TME) determines vital aspects of tumour development, such as tumour growth, metastases and response to therapy. Cancer-associated fibroblasts (CAFs) are abundant and extremely influential in this process and interact with cellular and matrix TME constituents such as endothelial and immune cells and collagens, fibronectin and elastin, respectively. However, CAFs are also the recipients of signals-both chemical and physical-that are generated by the TME, and their phenotype effectively evolves alongside the tumour mass during tumour progression. Amid a rising clinical interest in CAFs as a crucial force for disease progression, this review aims to contextualise the CAF phenotype using the chronological framework of the CAF life cycle within the evolving tumour stroma, ranging from quiescent fibroblasts to highly proliferative and secretory CAFs. The emergence, properties and clinical implications of CAF activation are discussed, as well as research strategies used to characterise CAFs and current clinical efforts to alter CAF function as a therapeutic strategy.


Assuntos
Fibroblastos Associados a Câncer/patologia , Neoplasias/fisiopatologia , Progressão da Doença , Humanos , Microambiente Tumoral/genética
2.
Biomaterials ; 283: 121417, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231786

RESUMO

Tumors contain heterogeneous and dynamic populations of cells that do not all display the fast-proliferating properties that traditional chemotherapies target. There is a need therefore, to develop novel treatment strategies that target diverse tumor cell properties. Identifying therapy combinations is challenging however. Current approaches have relied on cell lines cultured in monolayers with treatment response being assessed using endpoint metabolic assays, which although enable large-scale throughput, do not capture tumor heterogeneity. Here, a 3D in vitro tumor model using micro-molded hydrogels (microgels), the Gels for Live Analysis of Compartmentalized Environments (GLAnCE) platform, is adapted into a 96-well plate format (96-GLAnCE) that integrates patient-derived organoids (PDOs) and is combined with longitudinal automated imaging to address these limitations. Using 96-GLAnCE, two measures of tumor aggressiveness are quantified, tumor cell growth and in situ regrowth after drug treatment, in both cell lines and PDOs. The use of longitudinal image-based readouts enables the identification of tumor cell phenotypes with cell population and subpopulation resolution that cannot be detected by standard bulk-soluble assays. 96-GLAnCE is a versatile and robust platform that combines 3D-ECM based models, PDOs, and real-time assay readouts, to provide an additional tool for pre-clinical anti-cancer drug discovery for the identification of novel targets with translatable clinical significance.


Assuntos
Antineoplásicos , Microgéis , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Humanos , Neoplasias/patologia , Organoides/metabolismo
3.
Biomaterials ; 291: 121883, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343611

RESUMO

Complex 3D bioengineered tumour models provide the opportunity to better capture the heterogeneity of patient tumours. Patient-derived organoids are emerging as a useful tool to study tumour heterogeneity and variation in patient responses. Organoid cultures typically require a 3D microenvironment that can be manufactured easily to facilitate screening. Here we set out to create a high-throughput, "off-the-shelf" platform which permits the generation of organoid-containing engineered microtissues for standard phenotypic bioassays and image-based readings. To achieve this, we developed the Scaffold-supported Platform for Organoid-based Tissues (SPOT) platform. SPOT is a 3D gel-embedded in vitro platform that can be produced in a 96- or 384-well plate format and enables the generation of flat, thin, and dimensionally-defined microgels. SPOT has high potential for adoption due to its reproducible manufacturing methodology, compatibility with existing instrumentation, and reduced within-sample and between-sample variation, which can pose challenges to both data analysis and interpretation. Using SPOT, we generate cultures from patient derived pancreatic ductal adenocarcinoma organoids and assess the cellular response to standard-of-care chemotherapeutic compounds, demonstrating our platform's usability for drug screening. We envision 96/384-SPOT will provide a useful tool to assess drug sensitivity of patient-derived organoids and easily integrate into the drug discovery pipeline.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Organoides/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Descoberta de Drogas , Microambiente Tumoral
4.
Tissue Eng Part C Methods ; 27(3): 183-199, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33406987

RESUMO

Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.


Assuntos
Genômica , Neoplasias , Epigenômica , Humanos , Metabolômica , Proteômica
5.
Biomaterials ; 228: 119572, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683122

RESUMO

The interface between a tumour and the adjacent stroma is a site of great importance for tumour development. At this site, carcinoma cells are highly proliferative, undergo invasive phenotypic changes, and directly interact with surrounding stromal cells, such as cancer-associated fibroblasts (CAFs) which further exert pro-tumorigenic effects. Here we describe the development of GLAnCE (Gels for Live Analysis of Compartmentalized Environments), an easy-to-use hydrogel-culture platform for investigating CAF-tumour cell interaction dynamics in vitro at a tumour-stroma interface. GLAnCE enables observation of CAF-mediated enhancement of both tumour cell proliferation and invasion at the tumour-stroma interface in real time, as well as stratification between phenotypes at the interface versus in the bulk tumour tissue compartment. We found that CAF presence resulted in the establishment of an invasion-permissive, interface-specific matrix environment, that leads to carcinoma cell movement outwards from the tumour edge and tumour cell invasion. Furthermore, the spatial stratification capability of GLAnCE was leveraged to discern differences between tumour cell epithelial-to-mesenchymal (EMT) transition genes induced by paracrine signalling from CAFs versus genes induced by interface-specific, CAF-mediated microenvironment. GLAnCE combines high usability and tissue complexity, to provide a powerful in vitro platform to probe mechanisms of tumour cell movement specific to the microenvironment at the tumour-stroma interface.


Assuntos
Fibroblastos Associados a Câncer , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Fibroblastos , Géis , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA