Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 20(8): 65-77, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31364798

RESUMO

PURPOSE: To assess three advanced radiation therapy treatment planning tools on the intensity-modulated radiation therapy (IMRT) quality and consistency when compared to the clinically approved plans, referred as manual plans, which were planned without using any of these advanced planning tools. MATERIALS AND METHODS: Three advanced radiation therapy treatment planning tools, including auto-planning, knowledge-based planning, and multiple criteria optimization, were assessed on 20 previously treated clinical cases. Three institutions participated in this study, each with expertise in one of these tools. The twenty cases were retrospectively selected from Cleveland Clinic, including five head-and-neck (HN) cases, five brain cases, five prostate with pelvic lymph nodes cases, and five spine cases. A set of general planning objectives and organs-at-risk (OAR) dose constraints for each disease site from Cleveland Clinic was shared with other two institutions. A total of 60 IMRT research plans (20 from each institution) were designed with the same beam configuration as in the respective manual plans. For each disease site, detailed isodoseline distributions and dose volume histograms for a randomly selected representative case were compared among the three research plans and manual plan. In addition, dosimetric endpoints of five cases for each site were compared. RESULTS: Compared to the manual plans, the research plans using advanced tools showed substantial improvement for the HN patient cases, including the maximum dose to the spinal cord and brainstem and mean dose to the parotid glands. For the brain, prostate, and spine cases, the four types of plans were comparable based on dosimetric endpoint comparisons. CONCLUSION: With minimal planner interventions, advanced treatment planning tools are clinically useful, producing a plan quality similarly to or better than manual plans, improving plan consistency. For difficult cases such as HN cancer, advanced planning tools can further reduce radiation doses to numerous OARs while delivering adequate dose to the tumor targets.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Coluna Vertebral/radioterapia , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos
2.
J Appl Clin Med Phys ; 17(5): 235-244, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685115

RESUMO

The purpose of this work was to evaluate the potential of a new transmission detector for real-time quality assurance of dynamic-MLC-based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7-1.2 mm). The absorption of the device was minimal (~ 1%). The increased surface dose was small (1%-9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥ 30 × 30 cm2). Overall the accuracy and speed of the device show good potential for real-time quality assurance.


Assuntos
Fótons , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Humanos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação , Propriedades de Superfície
3.
J Appl Clin Med Phys ; 16(2): 5204, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103191

RESUMO

A recent publication indicated that the patient anatomical feature (PAF) model was capable of predicting optimal objectives based on past experience. In this study, the benefits of IMRT optimization using PAF-predicted objectives as guidance for prostate were evaluated. Three different optimization methods were compared.1) Expert Plan: Ten prostate cases (16 plans) were planned by an expert planner using conventional trial-and-error approach started with institutional modified OAR and PTV constraints. Optimization was stopped at 150 iterations and that plan was saved as Expert Plan. 2) Clinical Plan: The planner would keep working on the Expert Plan till he was satisfied with the dosimetric quality and the final plan was referred to as Clinical Plan. 3) PAF Plan: A third sets of plans for the same ten patients were generated fully automatically using predicted DVHs as guidance. The optimization was based on PAF-based predicted objectives, and was continued to 150 iterations without human interaction. DMAX and D98% for PTV, DMAX for femoral heads, DMAX, D10cc, D25%/D17%, and D40% for bladder/rectum were compared. Clinical Plans are further optimized with more iterations and adjustments, but in general provided limited dosimetric benefits over Expert Plans. PTV D98% agreed within 2.31% among Expert, Clinical, and PAF plans. Between Clinical and PAF Plans, differences for DMAX of PTV, bladder, and rectum were within 2.65%, 2.46%, and 2.20%, respectively. Bladder D10cc was higher for PAF but < 1.54% in general. Bladder D25% and D40% were lower for PAF, by up to 7.71% and 6.81%, respectively. Rectum D10cc, D17%, and D40% were 2.11%, 2.72%, and 0.27% lower for PAF, respectively. DMAX for femoral heads were comparable (< 35 Gy on average). Compared to Clinical Plan (Primary + Boost), the average optimization time for PAF plan was reduced by 5.2 min on average, with a maximum reduction of 7.1min. Total numbers of MUs per plan for PAF Plans were lower than Clinical Plans, indicating better delivery efficiency. The PAF-guided planning process is capable of generating clinical-quality prostate IMRT plans with no human intervention. Compared to manual optimization, this automatic optimization increases planning and delivery efficiency, while maintainingplan quality.


Assuntos
Órgãos em Risco , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Automação , Humanos , Masculino , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
4.
J Appl Clin Med Phys ; 16(1): 5137, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25679172

RESUMO

The purpose of this study was to evaluate the effect of dose calculation accuracy and the use of an intermediate dose calculation step during the optimization of intensity-modulated radiation therapy (IMRT) planning on the final plan quality for lung cancer patients. This study included replanning for 11 randomly selected free-breathing lung IMRT plans. The original plans were optimized using a fast pencil beam convolution algorithm. After optimization, the final dose calculation was performed using the analytical anisotropic algorithm (AAA). The Varian Treatment Planning System (TPS) Eclipse v11, includes an option to perform intermediate dose calculation during optimization using the AAA. The new plans were created using this intermediate dose calculation during optimization with the same planning objectives and dose constraints as in the original plan. Differences in dosimetric parameters for the planning target volume (PTV) dose coverage, organs-at-risk (OARs) dose sparing, and the number of monitor units (MU) between the original and new plans were analyzed. Statistical significance was determined with a p-value of less than 0.05. All plans were normalized to cover 95% of the PTV with the prescription dose. Compared with the original plans, the PTV in the new plans had on average a lower maximum dose (69.45 vs. 71.96Gy, p = 0.005), a better homogeneity index (HI) (0.08 vs. 0.12, p = 0.002), and a better conformity index (CI) (0.69 vs. 0.59, p = 0.003). In the new plans, lung sparing was increased as the volumes receiving 5, 10, and 30 Gy were reduced when compared to the original plans (40.39% vs. 42.73%, p = 0.005; 28.93% vs. 30.40%, p = 0.001; 14.11%vs. 14.84%, p = 0.031). The volume receiving 20 Gy was not significantly lower (19.60% vs. 20.38%, p = 0.052). Further, the mean dose to the lung was reduced in the new plans (11.55 vs. 12.12 Gy, p = 0.024). For the esophagus, the mean dose, the maximum dose, and the volumes receiving 20 and 60 Gy were lower in the new plans than in the original plans (17.91 vs. 19.24 Gy, p = 0.004; 57.32vs. 59.81 Gy, p = 0.020; 39.34% vs. 41.59%, p = 0.097; 12.56%vs. 15.35%, p = 0.101). For the heart, the mean dose, the maximum dose, and the volume receiving 40 Gy were also lower in new plans (11.07 vs. 12.04 Gy, p = 0.007; 56.41 vs. 57.7 Gy, p = 0.027; 7.16% vs. 9.37%, p= 0.012). The maximum dose to the spinal cord in the new plans was significantly lower than in the original IMRT plans (29.1 vs. 31.39Gy, p = 0.014). Difference in MU between the IMRT plans was not significant (1216.90 vs. 1198.91, p = 0.328). In comparison to the original plans, the number of iterations needed to meet the optimization objectives in the new plans was reduced by a factor of 2 (2-3 vs. 5-6 iterations). Further, optimization was 30% faster corresponding to an average time savings of 10-15 min for the reoptimized plans. Accuracy of the dose calculation algorithm during optimization has an impact on planning efficiency, as well as on the final plan dosimetric quality. For lung IMRT treatment planning, utilizing the intermediate dose calculation during optimization is feasible for dose homogeneity improvement of the PTV and for improvement of optimization efficiency.


Assuntos
Algoritmos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Humanos , Dosagem Radioterapêutica
5.
Int J Radiat Oncol Biol Phys ; 119(1): 261-280, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972715

RESUMO

Deep learning neural networks (DLNN) in Artificial intelligence (AI) have been extensively explored for automatic segmentation in radiotherapy (RT). In contrast to traditional model-based methods, data-driven AI-based models for auto-segmentation have shown high accuracy in early studies in research settings and controlled environment (single institution). Vendor-provided commercial AI models are made available as part of the integrated treatment planning system (TPS) or as a stand-alone tool that provides streamlined workflow interacting with the main TPS. These commercial tools have drawn clinics' attention thanks to their significant benefit in reducing the workload from manual contouring and shortening the duration of treatment planning. However, challenges occur when applying these commercial AI-based segmentation models to diverse clinical scenarios, particularly in uncontrolled environments. Contouring nomenclature and guideline standardization has been the main task undertaken by the NRG Oncology. AI auto-segmentation holds the potential clinical trial participants to reduce interobserver variations, nomenclature non-compliance, and contouring guideline deviations. Meanwhile, trial reviewers could use AI tools to verify contour accuracy and compliance of those submitted datasets. In recognizing the growing clinical utilization and potential of these commercial AI auto-segmentation tools, NRG Oncology has formed a working group to evaluate the clinical utilization and potential of commercial AI auto-segmentation tools. The group will assess in-house and commercially available AI models, evaluation metrics, clinical challenges, and limitations, as well as future developments in addressing these challenges. General recommendations are made in terms of the implementation of these commercial AI models, as well as precautions in recognizing the challenges and limitations.


Assuntos
Aprendizado Profundo , Radioterapia (Especialidade) , Humanos , Inteligência Artificial , Redes Neurais de Computação , Benchmarking , Planejamento da Radioterapia Assistida por Computador
6.
Phys Med Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959907

RESUMO

OBJECTIVE: This study aims to develop a fully Automatic Planning framework for Functional Lung Avoidance Radiotherapy (AP-FLART). Approach: The AP-FLART integrates a dosimetric score-based beam angle selection method and a meta-optimization-based plan optimization method, both of which incorporate lung function information to guide dose redirection from high-functional lung (HFL) to low-functional lung (LFL). It is applicable to both contour-based FLART (cFLART) and voxel-based FLART (vFLART) optimization options. A cohort of 18 lung cancer patient cases underwent planning-CT and SPECT perfusion scans were collected. AP-FLART was applied to generate conventional RT (ConvRT), cFLART, and vFLART plans for all cases. We compared automatic against manual ConvRT plans as well as automatic ConvRT against FLART plans, to evaluate the effectiveness of AP-FLART. Ablation studies were performed to evaluate the contribution of function-guided beam angle selection and plan optimization to dose redirection. Main results: Automatic ConvRT plans generated by AP-FALRT exhibited similar quality compared to manual counterparts. Furthermore, compared to automatic ConvRT plans, HFL mean dose, V20, and V5 were significantly reduced by 1.13 Gy (p<.001), 2.01% (p<.001), and 6.66% (p<.001) respectively for cFLART plans. Besides, vFLART plans showed a decrease in lung functionally weighted mean dose by 0.64 Gy (p<.01), fV20 by 0.90% (p=0.099), and fV5 by 5.07% (p<.01) respectively. Though inferior conformity was observed, all dose constraints were well satisfied. The ablation study results indicated that both function-guided beam angle selection and plan optimization significantly contributed to dose redirection. Significance: AP-FLART can effectively redirect doses from HFL to LFL without severely degrading conventional dose metrics, producing high-quality FLART plans. It has the potential to advance the research and clinical application of FLART by providing labor-free, consistent, and high-quality plans. Keywords: Functional lung avoidance radiotherapy; Automatic planning; Beam angle selection; Plan optimization.

7.
Med Phys ; 51(6): 3822-3849, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648857

RESUMO

Use of magnetic resonance (MR) imaging in radiation therapy has increased substantially in recent years as more radiotherapy centers are having MR simulators installed, requesting more time on clinical diagnostic MR systems, or even treating with combination MR linear accelerator (MR-linac) systems. With this increased use, to ensure the most accurate integration of images into radiotherapy (RT), RT immobilization devices and accessories must be able to be used safely in the MR environment and produce minimal perturbations. The determination of the safety profile and considerations often falls to the medical physicist or other support staff members who at a minimum should be a Level 2 personnel as per the ACR. The purpose of this guidance document will be to help guide the user in making determinations on MR Safety labeling (i.e., MR Safe, Conditional, or Unsafe) including standard testing, and verification of image quality, when using RT immobilization devices and accessories in an MR environment.


Assuntos
Imobilização , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imobilização/instrumentação , Radioterapia Guiada por Imagem/instrumentação
8.
ArXiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163138

RESUMO

Radiation-induced acoustic (RA) imaging is a promising technique for visualizing radiation energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However, it requires measuring hundreds or even thousands of averages to achieve satisfactory signal-to-noise ratios (SNRs). This repetitive measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging, limiting its clinical utility. In this study, we developed a general deep inception convolutional neural network (GDI-CNN) to denoise RA signals to substantially reduce the number of averages. The multi-dilation convolutions in the network allow for encoding and decoding signal features with varying temporal characteristics, making the network generalizable to signals from different radiation sources. The proposed method was evaluated using experimental data of X-ray-induced acoustic, protoacoustic, and electroacoustic signals, qualitatively and quantitatively. Results demonstrated the effectiveness and generalizability of GDI-CNN: for all the enrolled RA modalities, GDI-CNN achieved comparable SNRs to the fully-averaged signals using less than 2% of the averages, significantly reducing imaging dose and improving temporal resolution. The proposed deep learning framework is a general method for few-frame-averaged acoustic signal denoising, which significantly improves RA imaging's clinical utilities for low-dose imaging and real-time therapy monitoring.

9.
Phys Med Biol ; 68(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37820684

RESUMO

Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However, RA imaging signal often suffers from poor signal-to-noise ratios (SNRs), thus requiring measuring hundreds or even thousands of frames for averaging to achieve satisfactory quality. This repetitive measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging, limiting its clinical utility. In this study, we developed a general deep inception convolutional neural network (GDI-CNN) to denoise RA signals to substantially reduce the number of frames needed for averaging. The network employs convolutions with multiple dilations in each inception block, allowing it to encode and decode signal features with varying temporal characteristics. This design generalizes GDI-CNN to denoise acoustic signals resulting from different radiation sources. The performance of the proposed method was evaluated using experimental data of x-ray-induced acoustic, protoacoustic, and electroacoustic signals both qualitatively and quantitatively. Results demonstrated the effectiveness of GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results using only 10-frame-averaged measurements, reducing the imaging dose of x-ray-acoustic computed tomography (XACT) by 98.7%; it realized proton range accuracy parallel to 1500-frame-averaged results using only 20-frame-averaged measurements, improving the range verification frequency in proton therapy from 0.5 to 37.5 Hz; it reached electroacoustic image quality comparable to 750-frame-averaged results using only a single frame signal, increasing the electric field monitoring frequency from 1 fps to 1k fps. Compared to lowpass filter-based denoising, the proposed method demonstrated considerably lower mean-squared-errors, higher peak-SNR, and higher structural similarities with respect to the corresponding high-frame-averaged measurements. The proposed deep learning-based denoising framework is a generalized method for few-frame-averaged acoustic signal denoising, which significantly improves the RA imaging's clinical utilities for low-dose imaging and real-time therapy monitoring.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Acústica , Processamento de Imagem Assistida por Computador/métodos
10.
Med Phys ; 39(11): 6868-78, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23127079

RESUMO

PURPOSE: The authors present an evidence-based approach to quantify the effects of an array of patient anatomical features of the planning target volumes (PTVs) and organs-at-risk (OARs) and their spatial relationships on the interpatient OAR dose sparing variation in intensity modulated radiation therapy (IMRT) plans by learning from a database of high-quality prior plans. METHODS: The authors formulized the dependence of OAR dose volume histograms (DVHs) on patient anatomical factors into feature models which were learned from prior plans by a stepwise multiple regression method. IMRT plans for 64 prostate, 82 head-and-neck (HN) treatments were used to train the models. Two major groups of anatomical features were considered in this study: the volumetric information and the spatial information. The geometry of OARs relative to PTV is represented by the distance-to-target histogram, DTH. Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. The final models were tested by additional 24 prostate and 24 HN plans. RESULTS: Significant patient anatomical factors contributing to OAR dose sparing in prostate and HN IMRT plans have been analyzed and identified. They are: the median distance between OAR and PTV, the portion of OAR volume within an OAR specific distance range, and the volumetric factors: the fraction of OAR volume which overlaps with PTV and the portion of OAR volume outside the primary treatment field. Overall, the determination coefficients R(2) for predicting the first principal component score (PCS1) of the OAR DVH by the above factors are above 0.68 for all the OARs and they are more than 0.53 for predicting the second principal component score (PCS2) of the OAR DVHs except brainstem and spinal cord. Thus, the above set of anatomical features combined has captured significant portions of the DVH variations for the OARs in prostate and HN plans. To test how well these features capture the interpatient organ dose sparing variations in general, the DVHs and specific dose-volume indices calculated from the regression models were compared with the actual DVHs and dose-volume indices from each patient's plan in the validation dataset. The dose-volume indices compared were V99%, V85%, and V50% for bladder and rectum in prostate plans and parotids median dose in HN plans. The authors found that for the bladder and rectum models, 17 out of 24 plans (71%) were within 6% OAR volume error and 21 plans (85%) were within 10% error; For the parotids model, the median dose values for 30 parotids out of 48 (63%) were within 6% prescription dose error and the values in 40 parotids (83%) were within 10% error. CONCLUSIONS: Quantitative analysis of patient anatomical features and their correlation with OAR dose sparing has identified a number of important factors that explain significant amount of interpatient DVH variations in OARs. These factors can be incorporated into evidence-based learning models as effective features to provide patient-specific OAR dose sparing goals.


Assuntos
Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Humanos , Medicina de Precisão , Dosagem Radioterapêutica
11.
Phys Med Biol ; 67(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206745

RESUMO

Dose delivery uncertainty is a major concern in proton therapy, adversely affecting the treatment precision and outcome. Recently, a promising technique, proton-acoustic (PA) imaging, has been developed to provide real-timein vivo3D dose verification. However, its dosimetry accuracy is limited due to the limited-angle view of the ultrasound transducer. In this study, we developed a deep learning-based method to address the limited-view issue in the PA reconstruction. A deep cascaded convolutional neural network (DC-CNN) was proposed to reconstruct 3D high-quality radiation-induced pressures using PA signals detected by a matrix array, and then derive precise 3D dosimetry from pressures for dose verification in proton therapy. To validate its performance, we collected 81 prostate cancer patients' proton therapy treatment plans. Dose was calculated using the commercial software RayStation and was normalized to the maximum dose. The PA simulation was performed using the open-source k-wave package. A matrix ultrasound array with 64 × 64 sensors and 500 kHz central frequency was simulated near the perineum to acquire radiofrequency (RF) signals during dose delivery. For realistic acoustic simulations, tissue heterogeneity and attenuation were considered, and Gaussian white noise was added to the acquired RF signals. The proposed DC-CNN was trained on 204 samples from 69 patients and tested on 26 samples from 12 other patients. Predicted 3D pressures and dose maps were compared against the ground truth qualitatively and quantitatively using root-mean-squared-error (RMSE), gamma-index (GI), and dice coefficient of isodose lines. Results demonstrated that the proposed method considerably improved the limited-view PA image quality, reconstructing pressures with clear and accurate structures and deriving doses with a high agreement with the ground truth. Quantitatively, the pressure accuracy achieved an RMSE of 0.061, and the dose accuracy achieved an RMSE of 0.044, GI (3%/3 mm) of 93.71%, and 90%-isodose line dice of 0.922. The proposed method demonstrates the feasibility of achieving high-quality quantitative 3D dosimetry in PA imaging using a matrix array, which potentially enables the online 3D dose verification for prostate proton therapy.


Assuntos
Aprendizado Profundo , Terapia com Prótons , Masculino , Humanos , Terapia com Prótons/métodos , Prótons , Próstata , Acústica , Imagens de Fantasmas
12.
Med Phys ; 49(4): 2193-2202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35157318

RESUMO

BACKGROUND: Knowledge-based planning (KBP) is increasingly implemented clinically because of its demonstrated ability to improve treatment planning efficiency and reduce plan quality variations. However, cases with large dose-volume histogram (DVH) prediction uncertainties may still need manual adjustments by the planner to achieve high plan quality. PURPOSE: The purpose of this study is to develop a data-driven method to detect patients with high prediction uncertainties so that intentional effort is directed to these patients. METHODS: We apply an anomaly detection method known as the local outlier factor (LOF) to a dataset consisting of the training set and each of the prospective patients considered, to evaluate their likelihood of being an anomaly when compared with the training cases. Features used in the LOF analysis include anatomical features and the model-generated DVH principal component scores. To test the efficacy of the proposed model, 142 prostate patients were retrieved from the clinical database and split into a training dataset of 100 patients and a test dataset of 42 patients. The outlier identification performance was quantified by the difference between the DVH prediction root-mean-squared errors (RMSE) of the identified outlier cases and that of the remaining inlier cases. RESULTS: With a predefined LOF threshold of 1.4, the inlier cases achieved average RMSEs of 5.0 and 6.7 for bladder and rectum, while the outlier cases have substantially higher RMSEs of 6.7 and 13.0 in comparison. CONCLUSIONS: We propose a method that can determine the prospective patient's outlier status. This method can be integrated into existing automated treatment planning workflows to reduce the risk of generating suboptimal treatment plans while providing an upfront alert to the treatment planner.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Bases de Conhecimento , Masculino , Órgãos em Risco , Pelve , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
13.
J Radiosurg SBRT ; 8(1): 21-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387408

RESUMO

Purpose: The epidural space is a frequent site of cancer recurrence after spine stereotactic radiosurgery (SSRS). This may be due to microscopic disease in the epidural space which is underdosed to obey strict spinal cord dose constraints. We hypothesized that the epidural space could be purposefully irradiated to prescription dose levels, potentially reducing the risk of recurrence in the epidural space without increasing toxicity. Methods and materials: SSRS clinical treatment plans with spinal cord contours, spinal planning target volumes (PTVspine), and delivered dose distributions were retrospectively identified. An epidural space PTV (PTVepidural) was contoured to avoid the spinal cord and focus on regions near the PTVspine. Clinical plan constraints included PTVspine constraints (D95% and D5%, based on prescription dose) and spinal cord constraints (Dmax < 1300 cGy, D10% < 1000 cGy). Plans were revised with three prescriptions of 1800, 2000 and 2400 cGy in two sets, with one set of revisions (supplemented plans) designed to additionally target the PTVepidural by optimizing PTVepidural D95% in addition to meeting every clinical plan constraint. Clinical and revised plans were compared according to their PTVepidural DVH distributions, and D95% distributions. Results: Seventeen SSRS plans meeting the above criteria were identified. Supplemented plans had higher doses to the epidural low-dose regions at all prescription levels. Epidural PTV D95% values for the supplemented plans were all statistically significantly different from the values of the base plans (p < 10-4). The epidural PTV D95% increases depended on the initial prescription, increasing from 11.52 to 16.90 Gy, 12.23 to 18.85 Gy, and 13.87 to 19.54 Gy for target prescriptions of 1800, 2000 and 2400 cGy, respectively. Conclusions: Purposefully targeting the epidural space in SSRS may increase control in the epidural space without significantly increasing the risk of spinal cord toxicity. A clinical trial of this approach should be considered.

14.
Phys Med Biol ; 67(21)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36206747

RESUMO

Objective. Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance.Approach. This study included 231 head-and-neck intensity-modulated radiation therapy patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level = 0.05).Main results. For PTV-related metrics, all DL plans had significantly higher maximum dose (p < 0.001), conformity index (p < 0.001), and heterogeneity index (p < 0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5 mm (p < 0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans.Significance. Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
15.
Med Phys ; 38(2): 719-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452709

RESUMO

PURPOSE: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. METHODS: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. RESULTS: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy approximately 80% in prediction and effectiveness in improving ART planning quality. CONCLUSIONS: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.


Assuntos
Inteligência Artificial , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Tamanho do Órgão , Análise de Componente Principal , Neoplasias da Próstata/patologia , Controle de Qualidade , Dosagem Radioterapêutica , Estudos Retrospectivos
16.
J Appl Clin Med Phys ; 12(2): 3310, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21587173

RESUMO

We present a technique for planning and verification of craniospinal treatment with the patient in the supine position. Treatment delivery and verification is streamlined through the use of modern imaging techniques. Treatments use two lateral brain fields abutted to a single or pair of posterior spine fields. Treatment delivery is simplified by aligning all isocenters in the anterior-posterior and lateral directions. Patient positioning is accomplished via on-board kV imaging. Verification of field shape and junctions is accomplished with BB placement and MV portal imaging. Daily treatment is simplified by using only longitundinal couch shifts, which are recorded in the patient chart and RV database. The technique is simple to implement in a clinic that is already using a similar beam arrangement with the patient prone. It requires no additional devices to be fabricated (for immobilization or QA), and it takes advantage of all the existing elements of a modern linac.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Coluna Vertebral/radioterapia , Coluna Vertebral/efeitos da radiação , Adolescente , Adulto , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Criança , Pré-Escolar , Simulação por Computador , Humanos , Pessoa de Meia-Idade , Aceleradores de Partículas , Posicionamento do Paciente/métodos , Imagens de Fantasmas , Radioterapia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Decúbito Dorsal
17.
Biomed Phys Eng Express ; 8(1)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34731837

RESUMO

Deep learning algorithms for radiation therapy treatment planning automation require large patient datasets and complex architectures that often take hundreds of hours to train. Some of these algorithms require constant dose updating (such as with reinforcement learning) and may take days. When these algorithms rely on commerical treatment planning systems to perform dose calculations, the data pipeline becomes the bottleneck of the entire algorithm's efficiency. Further, uniformly accurate distributions are not always needed for the training and approximations can be introduced to speed up the process without affecting the outcome. These approximations not only speed up the calculation process, but allow for custom algorithms to be written specifically for the purposes of use in AI/ML applications where the dose and fluence must be calculated a multitude of times for a multitude of different situations. Here we present and investigate the effect of introducing matrix sparsity through kernel truncation on the dose calculation for the purposes of fluence optimzation within these AI/ML algorithms. The basis for this algorithm relies on voxel discrimination in which numerous voxels are pruned from the computationally expensive part of the calculation. This results in a significant reduction in computation time and storage. Comparing our dose calculation against calculations in both a water phantom and patient anatomy in Eclipse without heterogenity corrections produced gamma index passing rates around 99% for individual and composite beams with uniform fluence and around 98% for beams with a modulated fluence. The resulting sparsity introduces a reduction in computational time and space proportional to the square of the sparsity tolerance with a potential decrease in cost greater than 10 times that of a dense calculation allowing not only for faster caluclations but for calculations that a dense algorithm could not perform on the same system.


Assuntos
Algoritmos , Planejamento da Radioterapia Assistida por Computador , Aprendizado Profundo , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada
18.
Front Artif Intell ; 4: 624038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969289

RESUMO

Treatment planning for prostate volumetric modulated arc therapy (VMAT) can take 5-30 min per plan to optimize and calculate, limiting the number of plan options that can be explored before the final plan decision. Inspired by the speed and accuracy of modern machine learning models, such as residual networks, we hypothesized that it was possible to use a machine learning model to bypass the time-intensive dose optimization and dose calculation steps, arriving directly at an estimate of the resulting dose distribution for use in multi-criteria optimization (MCO). In this study, we present a novel machine learning model for predicting the dose distribution for a given patient with a given set of optimization priorities. Our model innovates upon the existing machine learning techniques by utilizing optimization priorities and our understanding of dose map shapes to initialize the dose distribution before dose refinement via a voxel-wise residual network. Each block of the residual network individually updates the initialized dose map before passing to the next block. Our model also utilizes contiguous and atrous patch sampling to effectively increase the receptive fields of each layer in the residual network, decreasing its number of layers, increasing model prediction and training speed, and discouraging overfitting without compromising on the accuracy. For analysis, 100 prostate VMAT cases were used to train and test the model. The model was evaluated by the training and testing errors produced by 50 iterations of 10-fold cross-validation, with 100 cases randomly shuffled into the subsets at each iteration. The error of the model is modest for this data, with average dose map root-mean-square errors (RMSEs) of 2.38 ± 0.47% of prescription dose overall patients and all optimization priority combinations in the patient testing sets. The model was also evaluated at iteratively smaller training set sizes, suggesting that the model requires between 60 and 90 patients for optimal performance. This model may be used for quickly estimating the Pareto set of feasible dose objectives, which may directly accelerate the treatment planning process and indirectly improve final plan quality by allowing more time for plan refinement.

19.
Quant Imaging Med Surg ; 11(12): 4797-4806, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34888190

RESUMO

BACKGROUND: Stereotactic body radiation therapy (SBRT) for liver cancer has shown promising therapeutic effects. Effective treatment relies not only on the precise delivery provided by image-guided radiation therapy (IGRT) but also high dose gradient formed around the treatment volume to spare functional liver tissue, which is highly dependent on the beam/arc angle selection. In this study, we aim to develop a decision support model to learn human planner's beam navigation approach for beam angle/arc angle selection for liver SBRT. METHODS: A total of 27 liver SBRT/HIGRT patients (10 IMRT, 17 VMAT/DCA) were included in this study. A dosimetric budget index was defined for each beam angle/control point considering dose penetration through the patient body and liver tissue. Optimal beam angle setting (beam angles for IMRT and start/terminal angle for VMAT/DCA) was determined by minimizing the loss function defined as the sum of total dosimetric budget index and beam span penalty function. Leave-one-out validation was exercised on all 27 cases while weighting coefficients in the loss function was tuned in nested cross validation. To compare the efficacy of the model, a model plan was generated using automatically generated beam setting while retaining the original optimization constraints in the clinical plan. Model plan was normalized to the same planning target volume (PTV) V100% as the clinical plans. Dosimetric endpoints including PTV D98%, D2%, liver V20Gy and total MU were compared between two plan groups. Wilcoxon Signed-Rank test was performed with the null hypothesis being that no difference exists between two plan groups. RESULTS: Beam setting prediction was instantaneous. Mean PTV D98% was 91.3% and 91.3% (P=0.566), while mean PTV D2% was 107.9% and 108.1% (P=0.164) for clinical plan and model plan respectively. Liver V20Gy showed no significant difference (P=0.590) with 23.3% for clinical plan and 23.4% for the model plan. Total MU is comparable (P=0.256) between the clinical plan (avg. 2,389.6) and model plan (avg. 2,319.6). CONCLUSIONS: The evidence driven beam setting model yielded similar plan quality as hand-crafted clinical plan. It is capable of capturing human's knowledge in beam selection decision making. This model could facilitate decision making for beam angle selection while eliminating lengthy trial-and-error process of adjusting beam setting during liver SBRT treatment planning.

20.
Phys Med Biol ; 66(23)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757945

RESUMO

Purpose.We have previously reported an artificial intelligence (AI) agent that automatically generates intensity-modulated radiation therapy (IMRT) plans via fluence map prediction, by-passing inverse planning. This AI agent achieved clinically comparable quality for prostate cases, but its performance on head-and-neck patients leaves room for improvement. This study aims to collect insights of the deep-learning-based (DL-based) fluence map prediction model by systematically analyzing its prediction errors.Methods.From the modeling perspective, the DL model's output is the fluence maps of IMRT plans. However, from the clinical planning perspective, the plan quality evaluation should be based on the clinical dosimetric criteria such as dose-volume histograms. To account for the complex and non-intuitive relationships between fluence map prediction errors and the corresponding dose distribution changes, we propose a novel error analysis approach that systematically examines plan dosimetric changes that are induced by varying amounts of fluence prediction errors. We investigated four decomposition modes of model prediction errors. The two spatial domain decompositions are based on fluence intensity and fluence gradient. The two frequency domain decompositions are based on Fourier-space banded frequency rings and Fourier-space truncated low-frequency disks. The decomposed error was analyzed for its impact on the resulting plans' dosimetric metrics. The analysis was conducted on 15 test cases spared from the 200 training and 16 validation cases used to train the model.Results.Most planning target volume metrics were significantly correlated with most error decompositions. The Fourier space disk radii had the largest Spearman's coefficients. The low-frequency region within a disk of ∼20% Fourier space contained most of errors that impact overall plan quality.Conclusions.This study demonstrates the feasibility of using fluence map prediction error analysis to understand the AI agent's performance. Such insights will help fine-tune the DL models in architecture design and loss function selection.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Inteligência Artificial , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA