Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Inorg Chem ; 60(15): 11251-11258, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34250794

RESUMO

On the basis of stainless-steel fiber (SSF)-delivered localized Eddy current heating (LECH) in response to an alternating magnetic field, a novel LECH-driven framework synthesis (LIFS) strategy has been developed for highly efficient metal-organic framework (MOF) synthesis, resulting in the production of a set of SSF/MOF composites consisting of MOF-coated SSF (SSF@MOF) fibers and free MOF crystals. Detailed studies on the LIFS reaction kinetics indicate that the use of LIFS can greatly promote MOF production in comparison to the conventional solvothermal reactions. To facilitate the practical applications, the resulting powder SSF/UiO-66-NH2 composites, as a typical example, are further processed into well-shaped SSF/UiO-66-NH2 monoliths (SUS) with varied MOF loadings. In SUSs, the embedded SSFs exhibit well-controlled LECH capacities depending on the applied magnetic field strength. Driven by LECH, SUS monoliths can be uniformly heated and fully regenerated, demonstrating a LECH-triggered framework regeneration (LIFR) process for highly efficient regenerating MOF monoliths. As LECH is delivered by the low-cost commercial SSFs and remotely triggered by an external magnetic field, our currently developed LIFS and LIFR processes provide a novel, low-cost, and energy-efficient way to highly efficiently synthesize and regenerate MOF materials.

2.
Appl Opt ; 59(2): 469-473, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225333

RESUMO

A method is proposed and demonstrated to improve a diffraction grating displacement sensor to simultaneously achieve nanometer-level resolution and an extended range of operation. The method exploits the polarization phase-shifting optical path to extract two sinusoidal signals with a quadrature phase shift. The interpolation circuit is applied to nonlinearly convert two sinusoidal signals into a standard incremental AB quadrature digital signal, implementing an extended operation range with the magnitude of a laser coherence length. This work enables displacement measurement operated at large-scale range, and provides a significant guide for the design of a high performance micro-displacement sensor.

3.
Small ; 15(29): e1804515, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30734493

RESUMO

Photocatalytic pathways are proved crucial for the sustainable production of chemicals and fuels required for a pollution-free planet. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, the efficacy of the 0D N doped carbon quantum dots (N-CQDs) is demonstrated in accelerating the charge separation and transfer and thereby boosting the activity of a narrow-bandgap SnS2 photocatalytic system. N-CQDs are in situ loaded onto SnS2 nanosheets in forming N-CQDs/SnS2 composite via an electrostatic interaction under hydrothermal conditions. Cr(VI) photoreduction rate of N-CQDs/SnS2 is highly enhanced by engineering the loading contents of N-CQDs, in which the optimal N-CQDs/SnS2 with 40 mol% N-CQDs exhibits a remarkable Cr(VI) photoreduction rate of 0.148 min-1 , about 5-time and 148-time higher than that of SnS2 and N-CQDs, respectively. Examining the photoexcited charges via zeta potential, X-ray photoelectron spectroscopy (XPS), surface photovoltage, and electrochemical impedance spectra indicate that the improved Cr(VI) photodegradation rate is linked to the strong electrostatic attraction between N-CQDs and SnS2 nanosheets in composite, which favors efficient carrier utilization. To further boost the carrier utilization, 4-nitrophenol is introduced in this photocatalytic system and the efficiency of Cr(VI) photoreduction is further promoted.

4.
Appl Opt ; 57(13): 3438-3443, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726509

RESUMO

A high-resolution displacement detection based on in-plane and out-of-plane moving gratings is discussed in this paper. To improve the detective resolution and stability, a model of a double metal/dielectric optical grating is established to investigate the tolerance of grating parameters. The zero-order optical diffraction efficiency of the grating is calculated by rigorous coupled-wavelength analysis, which depends on the grating parameters. The dependency relation curves are a cosine and pulse curve, respectively, for in-plane movement with the highest slope superior to 0.29%/nm and the highest resolution can reach to 0.01 nm, and for out-of-plane movement with the highest slope superior to 1.63%/nm and the optimum resolution can reach to 0.002 nm. These results indicate that the in-plane effect is feasible for a long-range and high-resolution displacement detection, and the out-of-plane effect is suitable for small-range and high-resolution displacement detection. Both kinds of effects provide a designed solution for the development of a high-resolution displacement sensor.

5.
Micromachines (Basel) ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930698

RESUMO

This paper presents the design of a 60 GHz millimeter-wave (MMW) slot array horn antenna based on the substrate-integrated waveguide (SIW) structure. The novelty of this device resides in the achievement of a broad impedance bandwidth and high gain performance by meticulously engineering the radiation band structure and slot array. The antenna demonstrates an impressive impedance bandwidth of 14.96 GHz (24.93%), accompanied by a remarkable maximum reflection coefficient of -39.47 dB. Furthermore, the antenna boasts a gain of 10.01 dBi, showcasing its outstanding performance as a high-frequency antenna with a wide bandwidth and high gain. To validate its capabilities, we fabricated and experimentally characterized a prototype of the antenna using a probe test structure. The measurement results closely align with the simulation results, affirming the suitability of the designed antenna for radar sensing applications in future global industrial scenarios.

6.
Micromachines (Basel) ; 15(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542654

RESUMO

A terahertz band (0.1-10 THz) has the characteristics of rich spectrum resources, high transmission speed, strong penetration, and clear directionality. However, the terahertz signal will suffer serious attenuation and absorption during transmission. Therefore, a terahertz antenna with high gain, high efficiency, and wide bandwidth is an indispensable key component of terahertz wireless systems and has become a research hotspot in the field of antennas. In this paper, a high-gain broadband antenna is presented for terahertz applications. The antenna is a three-layer structure, fed by a grounded coplanar waveguide (GCPW), using polytetrafluoroethylene (PTFE) material as the dielectric substrate, and the metal through-hole of the dielectric substrate forms a substrate-integrated waveguide (SIW) structure. The metal fence structure is introduced to reduce the coupling effect between the radiation patches and increase the radiation bandwidth and gain. The center frequency is 0.6366 THz, the operating bandwidth is 0.61-0.68 THz, the minimum value of the voltage standing wave ratio (VSWR) is 1.00158, and the peak gain is 13.14 dBi. In addition, the performance of the designed antenna with a different isolation structure, the length of the connection line, the height of the substrate, the radius of the through-hole, and the thickness of the patch is also studied.

7.
Adv Sci (Weinh) ; 10(3): e2204840, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424187

RESUMO

Sorption-based atmospheric water harvesting (AWH) offers a promising solution to the water scarcity in arid regions. However, majority of the existing AWH sorbents are suffering from rather poor water productivity due to their slow water adsorption-desorption cycling capability especially when they are applied in high packing thickness. Herein, an oxygen plasma-treated magnetic flower-like porous carbon (P-MFPC) with large open surfaces, abundant surface oxygen-containing moieties, and excellent localized magnetic induction heating (LMIH) capacity is developed. These merits, together with the use of air-blowing-assisted water adsorption and LMIH-driven water desorption strategy, synergistically allow P-MFPC with 2 cm of packing thickness to complete a AWH cycling in 20 min and deliver a record 4.5 LH2O kg-1 day-1 of water productivity at 30% relative humidity. Synergistically enabling such an ultrafast AWH cycling at high sorbent packing thickness provides a promising way for the scalable high-yield AWH with compact AWH systems.

8.
Micromachines (Basel) ; 14(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630044

RESUMO

This paper designs a five-bit microelectromechanical system (MEMS) time delay consisting of a single-pole six-throw (SP6T) RF switch and a coplanar waveguide (CPW) microstrip line. The focus is on the switch upper electrode design, power divider design, transmission line corner compensation structure design, CPW loading U-shaped slit structure design, and system simulation. The switch adopts a triangular upper electrode structure to reduce the cantilever beam equivalent elastic coefficient and the closed contact area to achieve low drive voltage and high isolation. The SP6T RF MEMS switch uses a disc-type power divider to achieve consistent RF performance across the output ports. When designed by loading U-shaped slit on transmission lines and step-compensated tangents at corners, the system loss is reduced, and the delay amount is improved. In addition, the overall size of the device is 2.1 mm × 2.4 mm × 0.5 mm, simulation results show that the device has a delay amount of 0-60 ps in the frequency range of 26.5-40 GHz, the delay accuracy at the center frequency is better than 0.63 ps, the delay error in the whole frequency band is less than 22.2%, the maximum insertion loss is 3.69 dB, and the input-output return rejection is better than 21.54 dB.

9.
Micromachines (Basel) ; 14(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512692

RESUMO

A switchable ultra-wideband THz absorber based on vanadium dioxide was proposed, which consists of a lowermost gold layer, a PMI dielectric layer, and an insulating and surface vanadium dioxide layer. Based on the phase transition properties of vanadium dioxide, switching performance between ultra-broadband and narrowband can achieve a near-perfect absorption. The constructed model was simulated and analyzed using finite element analysis. Simulations show that the absorption frequency of vanadium dioxide above 90% is between 3.8 THz and 15.6 THz when the vanadium dioxide is in the metallic state. The broadband absorber has an absorption bandwidth of 11.8 THz, is insensitive to TE and TM polarization, and has universal incidence angle insensitivity. When vanadium dioxide is in the insulating state, the narrowband absorber has a Q value as high as 1111 at a frequency of 13.89 THz when the absorption is more excellent than 99%. The absorber proposed in this paper has favorable symmetry properties, excellent TE and TM wave insensitivity, overall incidence angle stability, and the advantages of its small size, ultra-widebands and narrowbands, and elevated Q values. The designed absorber has promising applications in multifunctional devices, electromagnetic cloaking, and optoelectronic switches.

10.
Micromachines (Basel) ; 14(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837946

RESUMO

This article presents the design method of a compact MEMS switched-line true-time delay line (TTDL) network over a wide frequency range extending from 2 to 42 GHz using TTDL units. The TTDL units, namely the cascading radio frequency micro-electromechanical system (RF MEMS) switches and GCPW, were employed in the proposed TTDL network to improve the delay-bandwidth product (DBW) while maintaining its compact size and low delay variation (DV). For comparison, a theoretical analysis of the RF MEMS switch was performed while observing the switch performance with various top electrodes. The MEMS TTDL network has a compact size of 5 mm × 5 mm, with a maximum delay of 200 ps and a minimum of 30 ps. The maximum insertion loss of 9 states is 10 dB, and the in/out return loss is better than 20 dB across 2-42 GHz. The group delay variations are within ±2.5% for all the delay states over the operating frequency range. To the best of our knowledge, the proposed TTDL network obtains the most control bits among the TTDL networks offered to date.

11.
Micromachines (Basel) ; 14(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677262

RESUMO

We propose a functionally tunable terahertz (THz) metamaterial absorber, which has the switching performance between broadband-narrowband and dual-broadband near-perfect absorption due to the phase transition of Vanadium dioxide (VO2) and the tunable electrical property of graphene. The switching absorption properties are verified by computer simulation technology (CST) microwave study. The simulation results show that when VO2 is in the metallic phase, over 90% broadband absorption is realized in the 3.85-6.32 THz range. When the VO2 is in the insulating phase, the absorber shows quadruple narrowband absorption. By changing the Fermi level of graphene and the conductivity of VO2, the low-frequency broadband of 3.85-6.32 THz can be switched to the high-frequency broadband of 6.92-8.92 THz, and the absorber can be switched from a quadruple narrowband to a nearly singlefold narrowband. In addition, the proposed absorber is insensitive to polarization due to its symmetry and wide incident angle. The design may have potential applications in the THz range, such as switches, electromagnetic shielding, cloaking objects, filtering, sensing, and so on.

12.
Micromachines (Basel) ; 14(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37421049

RESUMO

In this article, a terahertz metamaterial biaxial strain pressure sensor structure is proposed, which can address the problems of the low sensitivity, the narrow pressure measurement range, and the uniaxial-only detection of existing terahertz pressure sensors. The performance of the pressure sensor was studied and analyzed using the time-domain finite-element-difference method. By changing the substrate material and optimizing the structure of the top cell, the size of the structure that can simultaneously improve the range and sensitivity of the pressure measurements was determined. The simulation results show that the sensor has a pressure-sensing effect in the frequency range of 1.0-2.2 THz under the conditions of transverse electric (TE) and transverse magnetic (TM) polarization, and the sensitivity can reach up to 346 GHz/µm. The proposed metamaterial pressure sensor has significant applications in the remote monitoring of target structure deformation.

13.
J Colloid Interface Sci ; 650(Pt B): 1022-1031, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459726

RESUMO

The kinetic competition between water oxidation/electron extraction processes and recombination behaviors is a key consideration in the development of efficient photoanodes for solar-driven water splitting. Investigating the photogenerated charge behaviors could guide the construction of high-efficiency photoanodes. In this study, the charge carrier kinetics involved in photoelectrochemical water oxidation of PDS/Ti-Fe2O3 were analyzed using surface photovoltage (SPV), transient photovoltage (TPV), short-pulse transient photocurrent (TPC) and photoelectrochemical impedance spectra (PEIS). The TPC results indicate the interfacial electric field introduced by the PDS loading increases the electron extraction and suppresses the bulk recombination, enhancing the spatial separation of photogenerated charges, which is consistent with the SPV and TPV results. Besides, the surface recombination of the back electron (BER) is also attenuated, which enhances the long-lived holes at the surface of PDS/Ti-Fe2O3 photoanode. Similarly, as obtained by PEIS fitting, the loading of PDS accelerates holes transfer at the photoanode/electrolyte interface, and increases the utilization of long-lived holes. In other word, the recombination behaviors of photogenerated charges are restrained both in the bulk and surface of the photoanode after the deposition of PDS, leading to enhanced PEC performance. These findings highlight the importance of understanding charge carrier dynamics in the design of high-efficient photoanodes.

14.
Chem Commun (Camb) ; 59(22): 3317, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36866695

RESUMO

Correction for 'd-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts' by Hui Chen et al., Chem. Commun., 2022, 58, 7730-7740, https://doi.org/10.1039/D2CC02299K.

15.
Micromachines (Basel) ; 14(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37241618

RESUMO

A multi-frequency microstrip antenna loaded with a ring-like structure has been proposed. The radiating patch on the antenna surface consists of three split-ring resonator structures, and the ground plate consists of a bottom metal strip and three ring-shaped metals with regular cuts to form a defective ground structure. The proposed antenna works in six different frequency bands covering 1.10, 1.33, 1.63, 1.97, 2.08, and 2.69 GHz and works entirely when connected to 5G NR (FR1, 0.45-3 GHz), 4GLTE (1.6265-1.6605 GHz), Personal Communication System (1.85-1.99 GHz), Universal Mobile Telecommunications System (1.92-2.176 GHz), WiMAX (2.5-2.69 GHz), and other communications frequency bands. Moreover, such antennas also have stable omnidirectional radiation properties across different operating frequency bands. This antenna meets the needs of portable multi-frequency mobile devices and provides a theoretical approach for the development of multi-frequency antennas.

16.
Micromachines (Basel) ; 14(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893382

RESUMO

Given the shortage of spectrum resources and the demand for communication systems of diminutive size, multi-function, and adaptive characteristics, this paper proposes an L-slot frequency reconfigurable antenna based on the MEMS switch. The antenna size is 4.07 × 5.27 mm2 and is suitable for the U-band. The antenna structure consists of two RF MEMS switches, a Rogers RT5880 dielectric substrate, an L-slot patch, and a full-coverage ground. The switch is of a series contact structure and is arranged at the corner of an L-slot. By controlling the on and off state of the switch, the antenna can switch between four states of 42.36, 47.65, 53.13, and 56.72 GHz. According to the simulation results in CST STUDIO SUITE 2018, the maximum gain of the antenna is 7.90 dB, the impedance bandwidth of each state is above 1 GHz, and the direction is mainly consistent. The antenna can meet the demand for multi-frequency millimeter wave communication.

17.
J Asthma Allergy ; 16: 689-710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465372

RESUMO

Purpose: Asthma is a chronic inflammatory airway disease involving multiple mechanisms, of which ferroptosis is a form of programmed cell death. Recent studies have shown that ferroptosis may play a crucial role in the pathogenesis of asthma, but no specific ferroptosis gene has been found in asthma, and the exact mechanism is still unclear. The present study aimed to screen ferroptosis genes associated with asthma and find therapeutic targets, in order to contribute a new clue for the diagnosis and therapy of asthma. Methods: Ferroptosis-related differentially expressed genes (FR-DEGs) in asthma were selected by the GSE41861, GSE43696 and ferroptosis datasets. Next, the FR-DEGs were subjected by GO and KEGG enrichment, and the mRNA-miRNA network was constructed. Then, GSEA and GSVA enrichment analysis and Immune infiltration analysis were performed, followed by targeted drug prediction. Finally, the expression of FR-DEGs was confirmed using GSE63142 dataset and RT-PCR assay. Results: We found 13 FR-DEGs by the GSE41861, GSE43696 and ferroptosis database. Functional enrichment analysis revealed that the 13 FR-DEGs were enriched in oxidative stress, immune response, ferroptosis, lysosome, necrosis, apoptosis etc. Moreover, our results revealed the mRNA-miRNA network of the FR-DEGs and identified candidate drugs. Also, immune infiltration revealed that ELAVL1, CREB5, CBR1 and NR1D2 are associated with the immune cells and may be potential targets in asthma. Finally, 10 FR-DEGs were validated by the GSE63142 database. It was verified that 7 FR-DEGs were differentially expressed by collecting asthma patients and healthy controls. Conclusion: This study ultimately identified 7 FR-DEGs for the diagnosis and therapy of asthma. These 7 FR-DEGs contribute to oxidative stress and immune responses. This study provides potential therapeutic targets and biomarkers for asthma patients, shedding further light on the pathogenesis of asthma as well as providing new insights into the treatment of asthma.

18.
J Int Med Res ; 51(9): 3000605231199019, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37756585

RESUMO

Pulmonary nodules are usually considered to be associated with malignant tumors and benign lesions, such as granuloma, pulmonary lymph nodes, fibrosis, and inflammatory lesions. Clinical cases of pulmonary nodules associated with hemophagocytic lymphohistiocytosis have rarely been reported. Therefore, when patients develop pulmonary nodules, the possibility of developing hemophagocytic lymphohistiocytosis is often not considered. We report the first case of familial hemophagocytic lymphohistiocytosis with recurrent pulmonary nodules as the first symptom. Our findings will hopefully provide new ideas for the diagnosis and treatment of pulmonary nodules in the future.


Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Adulto , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico
19.
ACS Appl Mater Interfaces ; 14(34): 39637-39645, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983968

RESUMO

Development of industrially favorable metal-organic framework (MOF) monoliths is of paramount importance for their real-world applications. However, MOF monoliths prepared with the existing MOF shaping methods usually have seriously compromised accessible pores and suffer from inefficient and energy-intensive recycling, thereby greatly limiting their practical applications. We herein present a magnetic stuffed bun-structured MOF (mSBM) bead consisting of highly porous poly(vinyl alcohol) wraps stuffed with a binder-free powder mixture of UiO-66 and Fe3O4 nanoparticles. Such a unique structure and composition of the mSBM not only make its MOF component have a well-reserved crystal structure, surface area, and porosity and the corresponding accessible pores but also impart it with excellent localized magnetic induction heating (LMIH) capability that enables the sufficient heating and highly efficient recycling of the mSBM. These merits of mSBMs are further exemplified by assessing their atmospheric water adsorption and LMIH-driven water desorption performance. The mSBMs exhibit well-reserved atmospheric water adsorption capacities, up to 100% LMIH-driven water desorption, excellent reusability, and durability toward the practical applications. Our current work, therefore, demonstrates a new MOF shaping strategy to produce MOF monoliths with well-defined shapes, noncompromised accessible pores, and highly efficient recycling capabilities, paving a bright avenue to accelerate the practical applications of MOF monoliths.

20.
Micromachines (Basel) ; 14(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36677128

RESUMO

Aggressive space mapping (ASM) is a common filter simulation and debugging method. It plays an important role in the field of microwave device design. This paper introduces ASM and presents the design and fabrication of a compact fifth-order microstrip interdigital filter with a center frequency of 2.5 GHz and a relative bandwidth of 10% using ASM. The filter used a double-layer silicon substrate structure and stepped impedance resonators (SIRs) and was optimized by ASM. After five iterations, the filter achieved the design specification, which greatly improves the efficiency of the filter design compared with the traditional method. It was fabricated on high-resistance silicon wafers by micro-electro-mechanical systems (MEMSs) technology, and the final size of the chip is 9.5 mm × 7.6 mm × 0.8 mm. The measurement results show that the characteristics of the filter are similar to the simulation results, which also shows the efficiency and precision of the ASM algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA