Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19856-19865, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37653575

RESUMO

Introducing an external visible-light field would be a promising strategy to improve the activity of the electrocatalytic CO2 reduction reaction (CO2RR), but it still remains a challenge due to the short excited-state lifetime of active sites. Herein, Ru(bpy)3Cl2 struts as powerful photosensitive donors were immobilized into the backbones of Co-porphyrin-based covalent organic frameworks (named Co-Bpy-COF-Rux, x is the molar ratio of Ru and Co species, x = 1/2 and 2/3) via coordination bonds, for the photo-coupled CO2RR to produce CO. The optimal Co-Bpy-COF-Ru1/2 displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs reversible hydrogen electrode (RHE) and a CO partial current density of 16.27 mA cm-2 at -1.1 V vs RHE under the assistance of light, both of which were far surpassing the values observed in the dark. The significantly enhanced activity is mainly attributed to the incorporation of a Ru(bpy)3Cl2 donor with long excited-state lifetime and concomitantly giant built-in electric field in Co-Bpy-COF-Ru1/2, which efficiently accelerate the photo-induced electron transfer from Ru(bpy)3Cl2 to the cobalt-porphyrin under the external light. Thus, the cobalt-porphyrin active sites have a longer excited-state lifetime to lower the rate-determining steps' energy occurring during the actual photo-coupled electrocatalytic CO2RR process. This is the first work of porphyrin-based COFs for photo-coupled CO2RR, opening a new frontier for the construction of efficient photo-coupled electrocatalysts.

2.
J Am Chem Soc ; 145(14): 8261-8270, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976930

RESUMO

The photocatalytic conversion of CO2 into C2+ products such as ethylene is a promising path toward the carbon neutral goal but remains a big challenge due to the high activation barrier for CO2 and similar reduction potentials of many possible multi-electron-transfer products. Herein, an effective tandem photocatalysis strategy has been developed to support conversion of CO2 to ethylene by construction of the synergistic dual sites in rhenium-(I) bipyridine fac-[ReI(bpy)(CO)3Cl] (Re-bpy) and copper-porphyrinic triazine framework [PTF(Cu)]. With these two catalysts, a large amount of ethylene can be produced at a rate of 73.2 µmol g-1 h-1 under visible light irradiation. However, ethylene cannot be obtained from CO2 by use of either component of the Re-bpy or PTF(Cu) catalysts alone; with a single catalyst, only monocarbon product CO is produced under similar conditions. In the tandem photocatalytic system, the CO generated at the Re-bpy sites is adsorbed by the nearby Cu single sites in PTF(Cu), and this is followed by a synergistic C-C coupling process which ultimately produces ethylene. Density functional theory calculations demonstrate that the coupling process between PTF(Cu)-*CO and Re-bpy-*CO to form the key intermediate Re-bpy-*CO-*CO-PTF(Cu) is vital to the C2H4 production. This work provides a new pathway for the design of efficient photocatalysts for photoconversion of CO2 to C2 products via a tandem process driven by visible light under mild conditions.

3.
Acc Chem Res ; 55(20): 2978-2997, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36153952

RESUMO

ConspectusThe continuing increase of the concentration of atmospheric CO2 has caused many environmental issues including climate change. Catalytic conversion of CO2 using thermochemical, electrochemical, and photochemical methods is a potential technique to decrease the CO2 concentration and simultaneously obtain value-added chemicals. Due to the high energy barrier of CO2 however, this method is still far from large-scale applications which requires high activity, selectivity, and stability. Therefore, development of efficient catalysts to convert CO2 to different products is urgent. With their well-engineered pores and chemical compositions, high surface area, elevated CO2 adsorption capability, and adjustable active sites, porous crystalline frameworks including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are potential materials for catalytic CO2 conversion. Here, we summarize our recent work on MOFs and COFs for thermocatalytic, electrocatalytic, and photocatalytic CO2 conversion and describe the structure-activity relationships that could guide the design of effective catalysts.The first section of this paper describes imidazolium-functionalized porous MOFs, including porous liquid and cationic MOFs with nucleophilic halogen ions, which can promote thermocatalytically CO2 cycloaddition reaction with epoxides toward cyclic carbonates at one bar pressure. A porous liquid MOF takes on the role of a CO2 reservoir to tackle the low local CO2 concentrations in gas-liquid-solid heterogeneous reactions. Imidazolium-functionalized MOFs with halogen ions for CO2 cycloaddition could avoid the use of cocatalysts, and this leads to milder and more facile experimental conditions and separation processes.In a section dealing with the electrocatalytic CO2 reduction reaction (CO2RR), we developed a series of conductive porous framework materials with fast electron transmission capabilities, which afford high current densities and outperform the traditional MOF and COF catalysts that have been reported. The intrinsically conductive two-dimensional 2D MOFs and COFs nanosheets based on the fully π-conjugated phthalocyanine motif with excellent electron transport capability were prepared, and strong electron transporters were also integrated into metalloporphyrin-based COFs for CO2RR. Cu2O quantum dots and Cu nanoparticles (NPs) can be uniformly dispersed on porous conductive MOFs/COFs to afford synergistic and/or tandem electrocatalysts, which can achieve highly selective production of CH4 or C2H4 in CO2RR.A third section describes our efforts to facilitate electron-hole separation in CO2 photocatalysis. Our focus is on regulation of coordination spheres in MOFs, fabrication of the architecture of MOF heterojunctions, and engineering MOF films to facilitate photocatalytic CO2 reduction.Finally, we discuss several problems associated with the studies of MOFs and COFs for CO2 conversion and consider some prospects of the fabrication of effective porous frameworks for CO2 adsorption and conversion.

4.
Angew Chem Int Ed Engl ; 62(7): e202215687, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424351

RESUMO

We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F- , Cl- , Br- , and I- ) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F-

5.
Angew Chem Int Ed Engl ; 62(36): e202306822, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37468435

RESUMO

We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals with d x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.

6.
Small ; 17(22): e2004933, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33155428

RESUMO

Covalent organic frameworks (COFs) are promising candidates for electrocatalytic reduction of carbon dioxide into valuable chemicals due to their porous crystalline structures and tunable single active sites, but the low conductivity leads to unmet current densities for commercial application. The challenge is to create conductive COFs for highly efficient electrocatalysis of carbon dioxide reduction reaction (CO2 RR). Herein, a porphyrin-based COF containing donor-acceptor (D-A) heterojunctions, termed TT-Por(Co)-COF, is constructed from thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) and 5,10,15,20-tetrakis(4-aminophenyl)-porphinatocobalt (Co-TAPP) via imine condensation reaction. Compared with COF-366-Co without TT, TT-Por(Co)-COF displays enhanced CO2 RR performance to produce CO due to its favorable charge transfer capability from the electron donor TT moieties to the acceptor Co-porphyrin ring active center. The combination of strong charge transfer properties and enormous amount of accessible active sites in the 2D TT-Por(Co)-COF nanosheets results in good catalytic performance with a high Faradaic efficiency of CO (91.4%, -0.6 V vs reversible hydrogen electrode (RHE) and larger partial current density of 7.28 mA cm-2 at -0.7 V versus RHE in aqueous solution. The results demonstrate that integration of D-A heterojunctions in COF can facilitate the intramolecular electron transfer, and generate high current densities for CO2 RR.

7.
Inorg Chem ; 60(4): 2112-2116, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32613832

RESUMO

Three cationic capsule-shaped Zr-based metal-organic polyhedra (MOPs) with different cavity sizes were successfully constructed through the self-assembly of trinuclear zirconocene clusters and imidazolium-functionalized dicarboxylic ligands. Owing to the imidazolium groups in the MOPs, they show good CO2 adsorption uptake. Moreover, the halogen anions of the imidazolium groups and Brønsted acid sites (-OH) in the Zr-based knots are in close proximity, making these MOPs able to catalyze synergistically the cycloaddition reaction of CO2 with epoxides into cyclic carbonates. This is the first report of using MOPs as catalysts for this reaction without the addition of a cocatalyst.

8.
Angew Chem Int Ed Engl ; 60(38): 20915-20920, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278674

RESUMO

The unique applications of porous metal-organic framework (MOF) liquids with permanent porosity and fluidity have attracted significant attention. However, fabrication of porous MOF liquids remains challenging because of the easy intermolecular self-filling of the cavity or the rapid settlement of porous hosts in hindered solvents that cannot enter their pores. Herein, we report a facile strategy for the fabrication of a MOF liquid (Im-UiO-PL) by surface ionization of an imidazolium-functionalized framework with a sterically hindered poly(ethylene glycol) sulfonate (PEGS) canopy. The Im-UiO-PL obtained in this way has a CO2 adsorption approximately 14 times larger than that of pure PEGS. Distinct from a porous MOF solid counterpart, the stored CO2 in Im-UiO-PL can be slowly released and efficiently utilized to synthesize cyclic carbonates in the atmosphere. This is the first example of the use of a porous MOF liquid as a CO2 storage material for catalysis. It offers a new method for the fabrication of unique porous liquid MOFs with functional behaviors in various fields of gas adsorption and catalysis.

9.
Chem Commun (Camb) ; 57(17): 2140-2143, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528467

RESUMO

A new strategy to prepare soluble homogeneous catalysts is developed by introducing imidazolium into cationic calix[4]arene-based metal-organic cages (MOCs). The soluble MOCs show high activity and recyclability in the cycloaddition reaction of CO2 without the addition of any co-catalysts. This method provides new inspiration to design highly efficient catalysts by combining the advantages of homogeneous and heterogeneous catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA