Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466106

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Assuntos
Benzo(a)pireno , Metilação de DNA , Epigênese Genética , Camundongos Pelados , Neoplasias Cutâneas , Triterpenos , Ácido Ursólico , Animais , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Benzo(a)pireno/toxicidade , Triterpenos/farmacologia , Camundongos , Epigênese Genética/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/induzido quimicamente
2.
J Sci Food Agric ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268595

RESUMO

BACKGROUND: Encapsulation of bioactive compounds within protein-based nanoparticles has garnered considerable attention in the food and pharmaceutical industries because of its potential to enhance stability and delivery. Soy protein isolate (SPI) has emerged as a promising candidate, prompting the present study aiming to modify its properties through controlled thermal and trypsin treatments for improved encapsulation efficiency (EE) of lutein and its storage stability. RESULTS: The EE of lutein nanoparticles encapsulated using SPI trypsin hydrolysates (SPIT) with three varying degrees of hydrolysis (4.11%, 6.91% and 10.61% for SPIT1, SPIT2 and SPIT3, respectively) increased by 12.00%, 15.78% and 18.59%, respectively, compared to SPI. Additionally, the photostability of SPIT2 showed a remarkable increase of 38.21% compared to SPI. The superior encapsulation efficiency and photostability of SPIT2 was attributed to increased exposure of hydrophobic groups, excellent antioxidant activity and uniform particle stability, despite exhibiting lower binding affinity to lutein compared to SPI. Furthermore, in SPIT2, the protein structure unfolded, with minimal impact on overall secondary structure upon lutein addition. CONCLUSION: The precise application of controlled thermal and trypsin treatments to SPI has been shown to effectively produce protein nanoparticles with substantially improved encapsulation efficiency for lutein and enhanced storage stability of the encapsulated lutein. These findings underscore the potential of controlled thermal and trypsin treatments to modify protein properties effectively and offer significant opportunities for expanding the applications of protein-based formulations across diverse fields. © 2024 Society of Chemical Industry.

3.
Carcinogenesis ; 44(5): 436-449, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100755

RESUMO

Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.


Assuntos
Carcinógenos Ambientais , Melatonina , Neoplasias Cutâneas , Camundongos , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Carcinogênese/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol , Epigênese Genética
4.
Carcinogenesis ; 43(2): 140-149, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34888630

RESUMO

Early detection of biomarkers in lung cancer is one of the best preventive strategies. Although many attempts have been made to understand the early events of lung carcinogenesis including cigarette smoking (CS) induced lung carcinogenesis, the integrative metabolomics and next-generation sequencing approaches are lacking. In this study, we treated the female A/J mice with CS carcinogen 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) and naturally occurring organosulphur compound, diallyl sulphide (DAS) for 2 and 4 weeks after NNK injection and examined the metabolomic and DNA CpG methylomic and RNA transcriptomic profiles in the lung tissues. NNK drives metabolic changes including mitochondrial tricarboxylic acid (TCA) metabolites and pathways including Nicotine and its derivatives like nicotinamide and nicotinic acid. RNA-seq analysis and Reactome pathway analysis demonstrated metabolism pathways including Phase I and II drug metabolizing enzymes, mitochondrial oxidation and signaling kinase activation pathways modulated in a sequential manner. DNA CpG methyl-seq analyses showed differential global methylation patterns of lung tissues from week 2 versus week 4 in A/J mice including Adenylate Cyclase 6 (ADCY6), Ras-related C3 botulinum toxin substrate 3 (Rac3). Oral DAS treatment partially reversed some of the mitochondrial metabolic pathways, global methylation and transcriptomic changes during this early lung carcinogenesis stage. In summary, our result provides insights into CS carcinogen NNK's effects on driving alterations of metabolomics, epigenomics and transcriptomics and the chemopreventive effect of DAS in early stages of sequential lung carcinogenesis in A/J mouse model.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Feminino , Camundongos , Compostos Alílicos , Butanonas/metabolismo , Carcinogênese , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/metabolismo , Epigênese Genética , Epigenômica , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Sulfetos , Nicotiana/efeitos adversos
5.
Mol Carcinog ; 61(1): 111-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727410

RESUMO

Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.


Assuntos
Metilação de DNA/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Neoplasias da Próstata/genética , Análise de Sequência de RNA , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Ursólico
6.
Chem Res Toxicol ; 35(7): 1220-1233, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35700067

RESUMO

Sulforaphane (SFN) is a potent anticancer agent which could protect the skin from ultraviolet (UV) radiation-induced insults. Currently, the metabolic rewiring and epigenetic reprograming induced by UVB and the role of SFN in UVB-mediated skin cell transformation remain largely unknown. Herein, we study the metabolome, epigenome, and transcriptome of human keratinocytes (HaCaT cells) exposed to UVB with or without SFN using liquid chromatography-mass spectroscopy, DNA methylation sequencing, and RNA sequencing. UVB increases intracellular reactive oxygen species (ROS) and SFN enhances ROS acutely in post-UVB-exposed HaCaT cells. UVB and SFN alter multiple metabolites and metabolism-related signaling pathways. Pathway analysis shows that UVB impacts numerous signaling pathways including STAT3, inhibition of matrix metalloproteases, and TGF-ß, among others. DNA/CpG methylation analysis shows that SFN could partially reverse some of the alterations of UVB-induced CpG methylome. Integrating RNA-seq and Methyl-seq data, starburst plots show the correlation of mRNA expression and CpG methylation status. The potential linkages between the metabolome, CpG methylome, and transcriptome suggest that metabolites produced during metabolism act as cofactors or substrates for catalytic epigenetic modification and transcriptional regulation. These results indicate that UVB drives metabolic rewiring, epigenetic reprograming, and phenotypic transcriptomic alterations and SFN would block or attenuate many of these aberrations, potentially contributing to the overall protective effect of SFN against UVB-induced skin damage.


Assuntos
Isotiocianatos , Queratinócitos , Apoptose , Epigênese Genética , Humanos , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Raios Ultravioleta
7.
Mol Carcinog ; 60(6): 391-402, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848375

RESUMO

Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.


Assuntos
Anticarcinógenos/farmacologia , Metilação de DNA/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias da Próstata/prevenção & controle , Animais , Epigenoma/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias da Próstata/genética
8.
Chem Res Toxicol ; 34(3): 713-722, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448797

RESUMO

Diabetic nephropathy (DN) is the major cause of kidney related diseases in patients induced by high glucose (HG) affecting around 40% of type 1 and 2 diabetic patients. It is characterized by excessive inflammation inducing factors, reactive oxygen species (ROS) overproduction, and potential epigenomic related changes. Fucoxanthin (FX), a carotenoid found in brown seaweed, has a structure which includes an allenic bond and a 5,6-monoepoxide in the molecule, with strong antioxidant and anti-inflammatory activity. However, understanding of the impact of FX on DN was lacking. In this study we tested the early effects of high glucose (HG) on mouse mesangial kidney Mes13 cells, a potential in vitro cell culture model of DN. Our results show that HG induced oxidative stress on kidney mesangial Mes13 cells, while FX treatment attenuates the oxidative stress by decreasing the ROS, demonstrated by flow cytometry. Next, we utilized next-generation sequencing (NGS) to profile the HG-induced early epigenomic and transcriptomic changes in this in vitro DN model and the protective effects of FX. Differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were analyzed using R software in HG and FX treated groups. Differential regulation of signaling pathways was studied using Reactome Pathway Analysis in the comparison. DEG analysis shows that novel biomarkers with specific pathways, including interleukin regulation, Toll-like receptor pathway, and PKA phosphorylation pathways, were found to be modulated by the FX treatment. TGF ß 1i1 (TGFB 1i1), MAP-3-kinase-13(MAP3K13) involved in crucial cellular processes including glucose metabolism, phosphodiesterase regulation was methylated in HG, which was demethylated with FX treatment. Integrated transcriptomic and CpG methylome analysis of DEGs and DMRs revealed that genes like adenylate cyclase (Adcy7), calponin 1 (CNN1), potassium voltage-gated channel interacting protein 2 (KCNIP2), phosphatidylinositol-4-phosphate 5-kinase type 1 ß (PIP5K1B), and transmembrane protein with EGF-like and two follistatin-like domains 1 (TMEFF1), which were modulated by FX in HG-exposed Mes13 cells, potentially modulate ion channel transport and glucose metabolism. In summary, our current study shows that novel early epigenomic and transcriptomic biomarkers were altered during the disease progression of HG-induced DN and that FX modified these alterations potentially contributing to the protective effects of mesangial cells from the HG-induced oxidative stress and damage.


Assuntos
Carotenoides/farmacologia , Glucose/antagonistas & inibidores , Rim/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Xantofilas/farmacologia , Animais , Carotenoides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Glucose/metabolismo , Rim/metabolismo , Células Mesangiais/metabolismo , Camundongos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/química , Espécies Reativas de Oxigênio/análise , Transcriptoma , Xantofilas/química
9.
FASEB J ; 34(1): 1304-1318, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914691

RESUMO

Phosphatase and tensin homolog located on chromosome 10 (PTEN) is a tumor suppressor gene and one of the most frequently mutated/deleted genes in human prostate cancer (PCa). However, how PTEN deletion would impact the epigenome and transcriptome alterations remain unknown. This hypothesis was tested in a prostate-specific PTEN-/- (KO) mouse prostatic adenocarcinoma model through DNA methyl-Seq and RNA-Seq analyses. Examination of cancer genomic datasets revealed that PTEN is expressed at lower levels in PTEN-deleted tumor samples than in normal solid tissue samples. Methylome and transcriptome profiling identified several inflammatory responses and immune response signaling pathways, including NF-kB signaling, IL-6 signaling, LPS/IL-1-mediated inhibition of RXR Function, PI3K in B lymphocytes, iCOS-iCOSL in T helper cells, and the role of NFAT in regulating the immune response, were affected by PTEN deletion. Importantly, a small subset of genes that showed DNA hypermethylation or hypomethylation was correlated with decreased or increased gene expression including CXCL1. quantitative polymerase chain reaction analyses of representative genes validated the RNA-Seq results. Histopathological examinations showed that the severity of prostatic intraepithelial neoplasia and inflammation development gradually increased as PTEN null mice aged. Collectively, these findings suggest that loss of PTEN drives global changes in DNA CpG methylation and transcriptomic gene expression and highly associated with several inflammatory and immune molecular pathways during PCa development. These biomarkers could be valuable molecular targets for cancer drug discovery and development against PCa.


Assuntos
Metilação de DNA , DNA de Neoplasias/metabolismo , Epigenoma , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/deficiência , Transcriptoma , Animais , DNA de Neoplasias/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata
10.
Mol Carcinog ; 59(2): 227-236, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820492

RESUMO

Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.


Assuntos
Neoplasias do Colo/prevenção & controle , Curcumina/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigenômica , Inflamação/prevenção & controle , Antineoplásicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Curcuma/química , Humanos , Inflamação/genética , Inflamação/patologia , Estadiamento de Neoplasias , Fitoterapia/métodos
11.
Chem Res Toxicol ; 33(2): 482-491, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31876149

RESUMO

Triple negative breast cancer (TNBC) is difficult to treat due to lack of druggable targets. We have found that treatment with the small molecule inhibitor KPT-9274 inhibits growth of TNBC cells and eventually leads to cell death. KPT-9274 is a dual specific inhibitor of PAK4 and Nicotinamide Phosphoribosyltransferase (NAMPT). The PAK4 protein kinase is often highly expressed in TNBC cells and has important roles in cell growth, survival, and migration. Previously we have found that inhibition of PAK4 leads to growth inhibition of TNBC cells both in vitro and in vivo. Likewise, NAMPT has been shown to be dysregulated in cancer due to its role in cell metabolism. In order to understand better how treating cells with KPT-9274 abrogates TNBC cell growth, we carried out an RNA sequencing of TNBC cells treated with KPT-9274. As a result, we identified Rictor as an important target that is inhibited in the KPT-9274 treated cells. Conversely, we found that Rictor is predicted to be activated when PAK4 is overexpressed in cells, which suggests a role for PAK4 in the regulation of Rictor. Rictor is a component of mTORC2, one of the complexes formed by the serine/threonine kinase mTOR. mTOR is important for the control of cell growth and metabolism. Our results suggest a new mechanism by which the KPT-9274 compound may block the growth of breast cancer cells, which is via inhibition of mTORC2 signaling. Consistent with this, sequencing analysis of PAK4 overexpressing cells indicates that PAK4 has a role in activation of the mTOR pathway.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Citocinas/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Quinases Ativadas por p21/metabolismo
12.
J Pharmacokinet Pharmacodyn ; 47(2): 131-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020381

RESUMO

Curcumin (CUR) is a major component of turmeric Curcuma longa, which is often used in food or as a dietary supplement. The purpose of this preclinical study is to investigate the acute pharmacokinetic and pharmacodynamic (PK/PD) profiles of two commercially marketed CUR products (GNC and Vitamin Shoppe) and a CUR powder from Sigma in female rats. Plasma samples were collected at specific time points and analyzed for CUR and its metabolite curcumin-O-glucuronide. RNA was extracted from leukocytes and analyzed for the expression of Nrf2-mediated antioxidant genes Nrf2, Ho-1, and Nqo1 by qPCR as selected PD markers. CUR PK was characterized by a 2-compartment model (2CM) after intravenous (IV) or oral administrations. Compared to IV CUR, the absolute bioavailability (F) of CUR for GNC (GC) is 0.9%, Vitamin Shoppe (VC) is 0.6% and Sigma (SC) is 3.1%. Pharmacodynamically, all three formulations showed induction of antioxidant Nrf2, Ho-1 and Nqo1 gene expression in rat leucocytes. PK/PD modeling of CUR's effect on antioxidant gene expression was well captured by an indirect response model. Physiologically based PK modeling and simulation using GastroPlus described the observed PK data reasonably well. In summary, our current study shows that the absolute oral bioavailability of the parent CUR was very low for all three formulations. However, despite the low CUR plasma concentrations, all three oral CUR formulations displayed PD response in the induction of Nrf2-mediated antioxidant genes, suggesting the potential of oral CUR contributing to the overall health beneficial effects of oral CUR.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/administração & dosagem , Curcumina/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Antioxidantes/metabolismo , Curcuma , Curcumina/análogos & derivados , Composição de Medicamentos , Feminino , Glucuronídeos , Heme Oxigenase-1/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Extratos Vegetais , Pós , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Mol Carcinog ; 58(10): 1738-1753, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237383

RESUMO

Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.


Assuntos
Metilação de DNA/genética , Neoplasias Induzidas por Radiação/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transcriptoma/genética , Animais , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigenoma/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Neoplasias , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma/efeitos da radiação , Triterpenos/farmacologia , Raios Ultravioleta/efeitos adversos , Ácido Ursólico
14.
Chem Res Toxicol ; 32(10): 1977-1988, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31525975

RESUMO

Diabetic nephropathy (DN) is a diabetes complication that comes from overactivation of Renin-Angiotensin System, excessive pro-inflammatory factors, reactive oxygen species (ROS) overproduction, and potential epigenetic changes. Tanshinone IIA (TIIA), a diterpene quinone phytochemical, has been shown to possess powerful antioxidant, anti-inflammatory, epigenetics, and protective effects against different diseases including DN by inhibiting ROS induced by high glucose (HG). However, epigenomic and transcriptomic study of DN and the protective effect of TIIA are lacking. In this study, next-generation sequencing of RNA and DNA methylation profiles on the potential underlying mechanisms of a DN model in mouse kidney mesangial mes13 cells challenged with HG and treatment with TIIA were conducted. Bioinformatic analysis coupled with Ingenuity Pathway analysis of RNA-seq was performed, and 1780 genes from HG/LG and 1416 genes from TIIA/HG were significantly altered. Several pro-inflammatory pathways like leukotriene biosynthesis and eicosanoid signaling pathways were activated by HG stimulation, while TIIA treatment would enhance glutathione-mediated detoxification pathway to overcome the excess oxidative stress and inflammation triggered by HG. Combination analysis of RNA-seq and Methyl-seq data sets, DNA methylation, and RNA expression of a list of DN associated genes, Nmu, Fgl2, Glo, and Kcnip2, were found to be altered in HG-induced mes13 DN model, and TIIA treatment would effectively restore the alterations. Taken together, these findings provide novel insights into the understanding of how epigenetic/epigenomic modifications could affect the progression of DN and the potential preventive effect of TIIA in DN.


Assuntos
Abietanos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Metilação de DNA/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/farmacologia , Transcriptoma/efeitos dos fármacos , Abietanos/química , Animais , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Metilação de DNA/genética , Nefropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Glucose/administração & dosagem , Inflamação/tratamento farmacológico , Camundongos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos
15.
Carcinogenesis ; 39(5): 669-680, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29547900

RESUMO

Inflammation is highly associated with colon carcinogenesis. Epigenetic mechanisms could play an important role in the initiation and progression of colon cancer. Curcumin, a dietary phytochemical, shows promising effects in suppressing colitis-associated colon cancer in azoxymethane-dextran sulfate sodium (AOM-DSS) mice. However, the potential epigenetic mechanisms of curcumin in colon cancer remain unknown. In this study, the anticancer effect of curcumin in suppressing colon cancer in an 18-week AOM-DSS colon cancer mouse model was confirmed. We identified lists of differentially expressed and differentially methylated genes in pairwise comparisons and several pathways involved in the potential anticancer effect of curcumin. These pathways include LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, production of NO and ROS in macrophages and IL-6 signaling. Among these genes, Tnf stood out with decreased DNA CpG methylation of Tnf in the AOM-DSS group and reversal of the AOM-DSS induced Tnf demethylation by curcumin. These observations in Tnf methylation correlated with increased and decreased Tnf expression in RNA-seq. The functional role of DNA methylation of Tnf was further confirmed by in vitro luciferase transcriptional activity assay. In addition, the DNA methylation level in a group of inflammatory genes was decreased in the AOM+DSS group but restored by curcumin and was validated by pyrosequencing. This study shows for the first time epigenomic changes in DNA CpG methylation in the inflammatory response from colitis-associated colon cancer and the reversal of their CpG methylation changes by curcumin. Future clinical epigenetic studies with curcumin in inflammation-associated colon cancer would be warranted.


Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Curcumina/farmacologia , Metilação de DNA/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Azoximetano/farmacologia , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
16.
J Cell Biochem ; 119(11): 9573-9582, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30129150

RESUMO

Colorectal cancer remains a leading malignancy in humans. The importance of epigenetic modification in the development of this disease is now being recognized. The reversible and dynamic nature of epigenetic modifications provides a promising strategy in colorectal cancer chemoprevention and treatment. Luteolin (LUT), a flavone dietary phytochemical, can modulate various signaling pathways involved in carcinogenesis. Many studies have demonstrated that LUT inhibits colorectal carcinogenesis by activating the Nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. However, the potential epigenetic mechanism underlying Nrf2/ARE pathway activation remains unclear. In this study, we aimed to explore the anticancer potential of LUT in human colon cancer cells and the epigenetic regulation of the Nrf2/ARE pathway. Specifically, our data showed that LUT suppressed cell proliferation and cellular transformation of HCT116 and HT29 cells in a dose-dependent manner. Additionally, quantitative real-time polymerase chain reaction and Western blot analysis were performed to determine the mRNA and protein expression of Nrf2 and its downstream genes after LUT treatment. Bisulfite genomic sequencing revealed that methylation of the Nrf2 promoter region was decreased by LUT, corresponding with the increased mRNA expression of Nrf2. Decreased protein levels and enzyme activities of epigenetic modifying enzymes, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), were also observed in LUT-treated HCT116 cells. In summary, our findings suggest that LUT may exert its antitumor activity in part via epigenetic modifications of the Nrf2 gene with subsequent induction of its downstream antioxidative stress pathway.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Epigênese Genética/genética , Luteolina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Células HCT116 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
Mol Carcinog ; 57(4): 512-521, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247555

RESUMO

Corosolic acid (CRA) is found in various plants and has been used as a health food supplement worldwide. Although it has been reported that CRA exhibits significant anticancer activity, the effect of this compound on prostate cancer remains unknown. In this study, we investigated the effect of CRA on cellular transformation and the reactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) through epigenetic regulation in TRAMP-C1 prostate cells. Specifically, we found that CRA inhibited anchorage-independent growth of prostate cancer TRAMP-C1 cells but not Nrf2 knockout prostate cancer TRAMP-C1 cells. Moreover, CRA induced mRNA and protein expression of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H Quinone Oxidoreductase 1 (NQO1). Bisulfite genomic sequencing and methylated DNA immunoprecipitation results revealed that CRA treatment decreased the level of methylation of the first five CpG sites of the Nrf2 promoter. Histone modification was analyzed using a chromatin immunoprecipitation (ChIP) assay, which revealed that CRA treatment increased the acetylation of histone H3 lysine 27 (H3K27ac) while decreasing the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter region of Nrf2. Furthermore, CRA treatment attenuated the protein expression of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). These findings indicate that CRA has a significant anticancer effect in TRAMP-C1 cells, which could be partly attributed to epigenetics including its ability to epigenetically restore the expression of Nrf2.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Próstata/metabolismo , Triterpenos/farmacologia , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Próstata/citologia , Neoplasias da Próstata/genética , Interferência de RNA
18.
Chem Res Toxicol ; 31(2): 88-96, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29228771

RESUMO

The carcinogenesis of prostate cancer (PCa) in TRAMP model is highly correlated with hypermethylation in the promoter region of Nrf2 and the accompanying reduced transcription of Nrf2 and its regulated detoxifying genes. We aimed to investigate the effects of (3E,5E)-3,5-bis-(3,4,5-trimethoxybenzylidene)-tetrahydro-thiopyran-4-one (F10) and (3E,5E)-3,5-bis-(3,4,5-trimethoxy-benzylidene)-tetrahydropyran-4-one (E10), two synthetic curcumin derivatives, on restoring Nrf2 activity in TRAMP C1 cells. HepG2-C8 cells transfected with an antioxidant-response element (ARE)-luciferase vector were treated with F10, E10, curcumin, and sulforaphane (SFN) to compare their effects on Nrf2-ARE pathways. We performed real-time quantitative PCR and Western blotting to investigate the effects of F10 and E10 on Nrf2, correlated phase II detoxification genes. We also measured expression and activity of DNMTand HDAC enzymes. Enrichment of H3K27me3 on the promoter region of Nrf2 was explored with a chromatin immunoprecipitation (ChIP) assay. Methylation of the CpG region in Nrf2 promoter was doubly examined by bisulfite genomic sequencing (BGS) and methylation DNA immunoprecipitation (MeDIP). Compared with curcumin and SFN, F10 is more potent in activating Nrf2-ARE pathways. Both F10 and E10 enhanced level of Nrf2 and the correlated phase II detoxifying genes. BGS and MeDIP assays indicated that F10 but not E10 hypomethylated the Nrf2 promoter. F10 also downregulated the protein level of DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC4, and HDAC7 and the activity of DNMTs and HDACs. F10 but not E10 effectively reduced the accumulation of H3k27me3 on the promoter of Nrf2. F10 and E10 can activate the Nrf2-ARE pathway and increase the level of Nrf2 and correlated phase II detoxification genes. The reactivation effect on Nrf2 by F10 in TRAMP C1 may come from demethylation, decrease of HDACs, and inhibition of H3k27me3 accumulation.


Assuntos
Antioxidantes/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacologia , Epigênese Genética/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Neoplasias da Próstata/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Mol Pharm ; 14(11): 3709-3717, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29035547

RESUMO

The triterpenoid ursolic acid (UA) has been proposed as a potential cancer chemopreventive agent in many preclinical and clinical studies. In the present work, we aimed to characterize the pharmacokinetics (PK) of UA and to quantitatively assess the antioxidative and anti-inflammatory effects of UA, which are potentially linked to its chemopreventive efficacy. UA was administered intravenously (i.v., 20 mg/kg) or by oral gavage (100 mg/kg) to male Sprague-Dawley rats, and blood samples were collected at a series of designated time points. The plasma concentration of UA was determined using a validated liquid chromatography-mass spectrometry (LC-MS) approach. A biexponential decline in the UA plasma concentration was observed after i.v. dosing and was fitted to a two-compartmental model. The expression levels of phase II drug metabolism (DM)/antioxidant genes and the inflammatory iNos gene in corresponding treatment arms were measured using qPCR as a pharmacodynamic (PD) marker. The expression of phase II DM/antioxidant genes increased and peaked approximately 3 h after 20 mg/kg UA treatment. In a lipopolysaccharide (LPS)-induced acute inflammation model, UA inhibited LPS-stimulated iNos expression and that of the epigenetic markers the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) in leukocytes. A PK-PD model using Jusko's indirect response model (IDR) with transition compartments (TC) was established to describe the time delay and magnitude of the gene expression elicited by UA. The PK-PD model provided reasonable fitting linking the plasma concentration of UA simultaneously with the PD response based on leukocyte mRNA expression. Overall, our results indicate that UA is effective at inducing various phase II DM/antioxidant genes and inhibiting pro-inflammatory genes in vivo. This PK-PD modeling approach may provide a conceptual framework for the future clinical evaluation of dietary chemopreventive agents in humans.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Triterpenos/farmacologia , Triterpenos/farmacocinética , Animais , Metilases de Modificação do DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Histona Desacetilases/metabolismo , Inflamação/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido Ursólico
20.
PLoS Genet ; 10(3): e1004089, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603532

RESUMO

Anterior chamber depth (ACD) is a key anatomical risk factor for primary angle closure glaucoma (PACG). We conducted a genome-wide association study (GWAS) on ACD to discover novel genes for PACG on a total of 5,308 population-based individuals of Asian descent. Genome-wide significant association was observed at a sequence variant within ABCC5 (rs1401999; per-allele effect size =  -0.045 mm, P = 8.17 × 10(-9)). This locus was associated with an increase in risk of PACG in a separate case-control study of 4,276 PACG cases and 18,801 controls (per-allele OR = 1.13 [95% CI: 1.06-1.22], P = 0.00046). The association was strengthened when a sub-group of controls with open angles were included in the analysis (per-allele OR = 1.30, P = 7.45 × 10(-9); 3,458 cases vs. 3,831 controls). Our findings suggest that the increase in PACG risk could in part be mediated by genetic sequence variants influencing anterior chamber dimensions.


Assuntos
Câmara Anterior/patologia , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Fechado/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Câmara Anterior/metabolismo , Povo Asiático , Glaucoma de Ângulo Fechado/patologia , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA