Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(8): 12775-12787, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472907

RESUMO

The development of chiral metasurfaces with spin-selective reflection or transmission provides a new way to control the circularly polarized (CP) waves. However, it is still a great challenge to independently manipulate the polarization, frequency, and phase of the spin-selective reflected waves in different operating bands, which may have potential applications in improving the data capacity of microwave and optical communication systems. Here, a dual-band chiral metasurface is proposed to generate gigantic intrinsic chirality with strong circular dichroism (CD) in two different frequency bands by piecing two typical mono-chiral units together. The polarization, frequency and phase of the spin-selective reflected waves can also be independently designed in the two operating bands by adjusting the configuration of the chiral unit structures. Based on the proposed chiral structures, a dual-band chiral metasurface with spin-selective anomalous reflections is designed and demonstrated by both simulations and experiments. The results show that the polarization of spin-selective reflected waves can be customized by selecting appreciate chiral structures, while the wavefront of the spin-selective reflected waves can be further controlled by designing their arrangement.

2.
Adv Sci (Weinh) ; 8(15): e2100149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34038615

RESUMO

Recently, programmable metamaterials or metasurfaces have been developed to dynamically edit electromagnetic waves for realizing different functions in the same platform. However, the proposed programmable metasurfaces can only control reflected or transmitted wavefronts in half-space. Here, a "Janus" digital coding metasurface with the capabilities to program various electromagnetic functions in the reflected (with R-codes) and transmitted (with T-codes) waves simultaneously is presented. Three PIN diodes are employed to design the metaparticle, and the state of the PIN diodes can be switched to change the reflected and transmitted phases independently. Three schemes achieved by the proposed programmable metasurface are provided as illustrative examples, including anomalous deflections, beam focusing, and scattering reduction in the full space. As a proof-of-concept, a prototype composed of 10 × 20 metaparticles is fabricated and the measured results are in good agreement with the designs and numerical results, validating the full-space modulations enabled by the programmable metasurface. It is expected that the new programmable metasurface can broaden the applications in stealth technologies, imaging systems, and the next generation of wireless communications.

3.
Sci Rep ; 8(1): 11908, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093621

RESUMO

Coding metasurfaces, composed of only two types of elements arranged according to a binary code, are attracting a steadily increasing interest in many application scenarios. In this study, we apply this concept to attain diffuse scattering at THz frequencies. Building up on previously derived theoretical results, we carry out a suboptimal metasurface design based on a simple, deterministic and computationally inexpensive algorithm that can be applied to arbitrarily large structures. For experimental validation, we fabricate and characterize three prototypes working at 1 THz, which, in accordance with numerical predictions, exhibit significant reductions of the radar cross-section, with reasonably good frequency and angular stability. Besides the radar-signature control, our results may also find potentially interesting applications to diffusive imaging, computational imaging, and (scaled to optical wavelengths) photovoltaics.

4.
Sci Rep ; 6: 23731, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025907

RESUMO

The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA