Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683993

RESUMO

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genética
2.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560977

RESUMO

Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.


Assuntos
Sinais (Psicologia) , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Coração , Miocárdio , Transdução de Sinais , Via de Sinalização Hippo , Proliferação de Células
3.
Annu Rev Pharmacol Toxicol ; 61: 113-134, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32776859

RESUMO

Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.


Assuntos
Sistema Cardiovascular , Miocardite , Neoplasias , Cardiotoxicidade , Humanos , Inibidores de Checkpoint Imunológico , Miocardite/tratamento farmacológico , Neoplasias/tratamento farmacológico
4.
Adv Exp Med Biol ; 1441: 253-268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884716

RESUMO

Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.


Assuntos
Coração , Análise de Célula Única , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Organogênese/genética , Regeneração/genética , Análise de Célula Única/métodos , Transcriptoma/genética
5.
Semin Cell Dev Biol ; 118: 129-135, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34006454

RESUMO

The development of single cell RNA sequencing technologies has accelerated the ability of scientists to understand healthy and disease states of the cardiovascular system. Congenital heart defects occur in approximately 40,000 births each year and 1 out of 4 children are born with critical congenital heart disease requiring surgical interventions and a lifetime of monitoring. An understanding of how the normal heart develops and how each cell contributes to normal and pathological anatomy is an important goal in pediatric cardiovascular research. Single cell sequencing has provided the tools to increase the ability to discover rare cell types and novel genes involved in normal cardiac development. Knowledge of gene expression of single cells within cardiac tissue has contributed to the understanding of how each cell type contributes to the anatomic structures of the heart. In this review, we summarize how single cell RNA sequencing has been utilized to understand cardiac developmental processes and congenital heart disease. We discuss the advantages and disadvantages of whole cell versus single nuclei RNA sequencing and describe the approaches to analyze the interactomes, transcriptomes, and differentiation trajectory from single cell data. We summarize the currently available single cell RNA sequencing technologies and technical aspects of performing single cell analysis and how to overcome common obstacles. We also review data from the recently published human and mouse fetal heart atlases and advancements that have occurred within the field due to the application of these single cell tools. Finally we highlight the potential for single cell technologies to uncover novel mechanisms of disease pathogenesis by leveraging findings from genome wide association studies.


Assuntos
Cardiopatias Congênitas/genética , Coração/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Humanos
6.
Circulation ; 146(4): 316-335, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35762356

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS: To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS: Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS: Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Miocardite , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Epitopos/efeitos adversos , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Camundongos , Miocardite/metabolismo
7.
Cell ; 132(4): 537-43, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18295570

RESUMO

Multipotent cardiac progenitor cells are found in the fetal and adult heart of many mammalian species including humans and form as intermediates during the differentiation of embryonic stem cells. Despite similar biological properties, the molecular identities of these different cardiac progenitor cell populations appear to be distinct. Elucidating the origins and lineage relationships of these cell populations will accelerate clinical applications such as drug screening and cell therapy as well as shedding light on the pathogenic mechanisms underlying cardiac diseases.


Assuntos
Miocárdio/citologia , Células-Tronco/citologia , Animais , Coração/embriologia , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Transplante de Células-Tronco
8.
Development ; 146(12)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31142541

RESUMO

The heart is a complex organ composed of multiple cell and tissue types. Cardiac cells from different regions of the growing embryonic heart exhibit distinct patterns of gene expression, which are thought to contribute to heart development and morphogenesis. Single cell RNA sequencing allows genome-wide analysis of gene expression at the single cell level. Here, we have analyzed cardiac cells derived from early stage developing hearts by single cell RNA-seq and identified cell cycle gene expression as a major determinant of transcriptional variation. Within cell cycle stage-matched CMs from a given heart chamber, we found that CMs in the G2/M phase downregulated sarcomeric and cytoskeletal markers. We also identified cell location-specific signaling molecules that may influence the proliferation of other nearby cell types. Our data highlight how variations in cell cycle activity selectively promote cardiac chamber growth during development, reveal profound chamber-specific cell cycle-linked transcriptional shifts, and open the way to deeper understanding of pathogenesis of congenital heart disease.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Análise de Célula Única/métodos , Transcrição Gênica , Animais , Ciclo Celular , Análise por Conglomerados , Biologia Computacional , Citoesqueleto/metabolismo , Genômica , Camundongos , Morfogênese , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , RNA/metabolismo , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
9.
J Mol Cell Cardiol ; 160: 121-127, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303670

RESUMO

Immune checkpoint inhibitors (ICI) have changed the landscape of cancer therapy, but their use carries a high risk of cardiac immune related adverse events (iRAEs). With the expanding utilization of ICI therapy, there is a growing need to understand the underlying mechanisms behind their anti-tumor activity as well as their immune-mediated toxicities. In this review, we will focus on clinical characteristics and immune pathways of ICI cardiotoxicity, with an emphasis on single-cell technologies used to gain insights in this field. We will focus on three key areas of ICI-mediated immune pathways, including the anti-tumor immune response, the augmentation of the immune response by ICIs, and the pathologic "autoimmune" response in some individuals leading to immune-mediated toxicity, as well as local factors in the myocardial immune environment predisposing to autoimmunity. Discerning the underlying mechanisms of these immune pathways is necessary to inform the development of targeted therapies for ICI cardiotoxicities and reduce treatment related morbidity and mortality.


Assuntos
Antineoplásicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Aterosclerose/induzido quimicamente , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/métodos , Miocardite/induzido quimicamente , Pericardite/induzido quimicamente , Vasculite/induzido quimicamente , Animais , Arritmias Cardíacas/imunologia , Aterosclerose/imunologia , Autoimunidade/efeitos dos fármacos , Cardiotoxicidade/imunologia , Humanos , Camundongos , Miocardite/imunologia , Pericardite/imunologia , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/imunologia , Fatores de Risco , Resultado do Tratamento , Vasculite/imunologia
10.
Circulation ; 142(17): 1667-1683, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32806952

RESUMO

BACKGROUND: In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS: Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS: Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Miocárdio/patologia , Disfunção Ventricular Direita/fisiopatologia , Animais , Criança , Pré-Escolar , Metabolismo Energético , Humanos , Masculino , Camundongos , Adulto Jovem
11.
Circulation ; 142(19): 1848-1862, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929989

RESUMO

BACKGROUND: Endothelial cells (ECs) display considerable functional heterogeneity depending on the vessel and tissue in which they are located. Whereas these functional differences are presumably imprinted in the transcriptome, the pathways and networks that sustain EC heterogeneity have not been fully delineated. METHODS: To investigate the transcriptomic basis of EC specificity, we analyzed single-cell RNA sequencing data from tissue-specific mouse ECs generated by the Tabula Muris consortium. We used a number of bioinformatics tools to uncover markers and sources of EC heterogeneity from single-cell RNA sequencing data. RESULTS: We found a strong correlation between tissue-specific EC transcriptomic measurements generated by either single-cell RNA sequencing or bulk RNA sequencing, thus validating the approach. Using a graph-based clustering algorithm, we found that certain tissue-specific ECs cluster strongly by tissue (eg, liver, brain), whereas others (ie, adipose, heart) have considerable transcriptomic overlap with ECs from other tissues. We identified novel markers of tissue-specific ECs and signaling pathways that may be involved in maintaining their identity. Sex was a considerable source of heterogeneity in the endothelial transcriptome and we discovered Lars2 to be a gene that is highly enriched in ECs from male mice. We found that markers of heart and lung ECs in mice were conserved in human fetal heart and lung ECs. We identified potential angiocrine interactions between tissue-specific ECs and other cell types by analyzing ligand and receptor expression patterns. CONCLUSIONS: We used single-cell RNA sequencing data generated by the Tabula Muris consortium to uncover transcriptional networks that maintain tissue-specific EC identity and to identify novel angiocrine and functional relationships between tissue-specific ECs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Células Endoteliais/metabolismo , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Especificidade de Órgãos
12.
Circ Res ; 125(4): 379-397, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31284824

RESUMO

RATIONALE: The cardiac conduction system (CCS) consists of distinct components including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers. Despite an essential role for the CCS in heart development and function, the CCS has remained challenging to interrogate because of inherent obstacles including small cell numbers, large cell-type heterogeneity, complex anatomy, and difficulty in isolation. Single-cell RNA-sequencing allows for genome-wide analysis of gene expression at single-cell resolution. OBJECTIVE: Assess the transcriptional landscape of the entire CCS at single-cell resolution by single-cell RNA-sequencing within the developing mouse heart. METHODS AND RESULTS: Wild-type, embryonic day 16.5 mouse hearts (n=6 per zone) were harvested and 3 zones of microdissection were isolated, including: Zone I-sinoatrial node region; Zone II-atrioventricular node/His region; and Zone III-bundle branch/Purkinje fiber region. Tissue was digested into single-cell suspensions, cells isolated, mRNA reverse transcribed, and barcoded before high-throughput sequencing and bioinformatics analyses. Single-cell RNA-sequencing was performed on over 22 000 cells, and all major cell types of the murine heart were successfully captured including bona fide clusters of cells consistent with each major component of the CCS. Unsupervised weighted gene coexpression network analysis led to the discovery of a host of novel CCS genes, a subset of which were validated using fluorescent in situ hybridization as well as whole-mount immunolabeling with volume imaging (iDISCO+) in 3 dimensions on intact mouse hearts. Further, subcluster analysis unveiled isolation of distinct CCS cell subtypes, including the clinically relevant but poorly characterized transitional cells that bridge the CCS and surrounding myocardium. CONCLUSIONS: Our study represents the first comprehensive assessment of the transcriptional profiles from the entire CCS at single-cell resolution and provides a characterization in the context of development and disease.


Assuntos
Sistema de Condução Cardíaco/metabolismo , Transcriptoma , Animais , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/embriologia , Camundongos , RNA-Seq , Análise de Célula Única
13.
Curr Cardiol Rep ; 23(8): 103, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196831

RESUMO

PURPOSE OF REVIEW: Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS: Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.


Assuntos
Arritmias Cardíacas , Sistema de Condução Cardíaco , Arritmias Cardíacas/genética , Perfilação da Expressão Gênica , Coração , Humanos , Transcriptoma
14.
Circ Res ; 123(4): 443-450, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29986945

RESUMO

RATIONALE: Human-induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) have risen as a useful tool in cardiovascular research, offering a wide gamut of translational and clinical applications. However, inefficiency of the currently available iPSC-EC differentiation protocol and underlying heterogeneity of derived iPSC-ECs remain as major limitations of iPSC-EC technology. OBJECTIVE: Here, we performed droplet-based single-cell RNA sequencing (scRNA-seq) of the human iPSCs after iPSC-EC differentiation. Droplet-based scRNA-seq enables analysis of thousands of cells in parallel, allowing comprehensive analysis of transcriptional heterogeneity. METHODS AND RESULTS: Bona fide iPSC-EC cluster was identified by scRNA-seq, which expressed high levels of endothelial-specific genes. iPSC-ECs, sorted by CD144 antibody-conjugated magnetic sorting, exhibited standard endothelial morphology and function including tube formation, response to inflammatory signals, and production of NO. Nonendothelial cell populations resulting from the differentiation protocol were identified, which included immature cardiomyocytes, hepatic-like cells, and vascular smooth muscle cells. Furthermore, scRNA-seq analysis of purified iPSC-ECs revealed transcriptional heterogeneity with 4 major subpopulations, marked by robust enrichment of CLDN5, APLNR, GJA5, and ESM1 genes, respectively. CONCLUSIONS: Massively parallel, droplet-based scRNA-seq allowed meticulous analysis of thousands of human iPSCs subjected to iPSC-EC differentiation. Results showed inefficiency of the differentiation technique, which can be improved with further studies based on identification of molecular signatures that inhibit expansion of nonendothelial cell types. Subtypes of bona fide human iPSC-ECs were also identified, allowing us to sort for iPSC-ECs with specific biological function and identity.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Diferenciação Celular , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Análise de Célula Única , Proteína alfa-5 de Junções Comunicantes
15.
Curr Cardiol Rep ; 22(5): 34, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350632

RESUMO

PURPOSE OF REVIEW: COronaVirus Disease 2019 (COVID-19) has spread at unprecedented speed and scale into a global pandemic with cardiovascular risk factors and complications emerging as important disease modifiers. We aim to review available clinical and biomedical literature on cardiovascular risks of COVID-19. RECENT FINDINGS: SARS-CoV2, the virus responsible for COVID-19, enters the cell via ACE2 expressed in select organs. Emerging epidemiological evidence suggest cardiovascular risk factors are associated with increased disease severity and mortality in COVID-19 patients. Patients with a more severe form of COVID-19 are also more likely to develop cardiac complications such as myocardial injury and arrhythmia. The true incidence of and mechanism underlying these events remain elusive. Cardiovascular diseases appear intricately linked with COVID-19, with cardiac complications contributing to the elevated morbidity/mortality of COVID-19. Robust epidemiologic and biologic studies are urgently needed to better understand the mechanism underlying these associations to develop better therapies.


Assuntos
Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Betacoronavirus/ultraestrutura , COVID-19 , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/virologia , Comorbidade , Coronavirus/metabolismo , Coronavirus/patogenicidade , Coronavirus/ultraestrutura , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Fatores de Risco , SARS-CoV-2 , Resultado do Tratamento
16.
Curr Cardiol Rep ; 22(5): 32, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32318865

RESUMO

PURPOSE OF REVIEW: Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide. While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear. Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses. RECENT FINDINGS: A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection. Development of new onset myocardial injury during COVID-19 also increases mortality. While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome. Potential treatments for reducing viral infection and excessive immune responses are also discussed. COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality. More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Cardiopatias/complicações , Cardiopatias/imunologia , Cardiopatias/virologia , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Infecções por Coronavirus/terapia , Citocinas/imunologia , Humanos , Hipóxia/patologia , Miócitos Cardíacos/patologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/terapia , SARS-CoV-2
17.
Curr Cardiol Rep ; 22(5): 36, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32405913

RESUMO

It has been pointed out that the second paragraph of the section "Treatments for SARS-CoV-2 Infection" contains an error. The original article has been corrected.

18.
Circ Res ; 120(6): 941-959, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302741

RESUMO

Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.


Assuntos
Cardiopatias/terapia , Coração/embriologia , Regeneração , Medicina Regenerativa/métodos , Animais , Coração/fisiologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais
20.
Curr Cardiol Rep ; 21(9): 90, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31352612

RESUMO

PURPOSE OF REVIEW: 3D bioprinting technologies hold significant promise for the generation of engineered cardiac tissue and translational applications in medicine. To generate a clinically relevant sized tissue, the provisioning of a perfusable vascular network that provides nutrients to cells in the tissue is a major challenge. This review summarizes the recent vascularization strategies for engineering 3D cardiac tissues. RECENT FINDINGS: Considerable steps towards the generation of macroscopic sizes for engineered cardiac tissue with efficient vascular networks have been made within the past few years. Achieving a compact tissue with enough cardiomyocytes to provide functionality remains a challenging task. Achieving perfusion in engineered constructs with media that contain oxygen and nutrients at a clinically relevant tissue sizes remains the next frontier in tissue engineering. The provisioning of a functional vasculature is necessary for maintaining a high cell viability and functionality in engineered cardiac tissues. Several recent studies have shown the ability to generate tissues up to a centimeter scale with a perfusable vascular network. Future challenges include improving cell density and tissue size. This requires the close collaboration of a multidisciplinary teams of investigators to overcome complex challenges in order to achieve success.


Assuntos
Bioimpressão/métodos , Vasos Coronários/fisiologia , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Terapia Baseada em Transplante de Células e Tecidos , Vasos Coronários/citologia , Humanos , Miocárdio , Miócitos Cardíacos/citologia , Impressão Tridimensional , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA