Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38938876

RESUMO

Dynamic gridded population data are crucial in fields such as disaster reduction, public health, urban planning, and global change studies. Despite the use of multi-source geospatial data and advanced machine learning models, current frameworks for population spatialization often struggle with spatial non-stationarity, temporal generalizability, and fine temporal resolution. To address these issues, we introduce a framework for dynamic gridded population mapping using open-source geospatial data and machine learning. The framework consists of (i) delineation of human footprint zones, (ii) construction of muliti-scale population prediction models using automated machine learning (AutoML) framework and geographical ensemble learning strategy, and (iii) hierarchical population spatial disaggregation with pycnophylactic constraint-based corrections. Employing this framework, we generated hourly time-series gridded population maps for China in 2016 with a 1-km spatial resolution. The average accuracy evaluated by root mean square deviation (RMSD) is 325, surpassing datasets like LandScan, WorldPop, GPW, and GHSL. The generated seamless maps reveal the temporal dynamic of population distribution at fine spatial scales from hourly to monthly. This framework demonstrates the potential of integrating spatial statistics, machine learning, and geospatial big data in enhancing our understanding of spatio-temporal heterogeneity in population distribution, which is essential for urban planning, environmental management, and public health.

2.
New Phytol ; 232(1): 134-147, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165791

RESUMO

Leaf trait relationships are widely used to predict ecosystem function in terrestrial biosphere models (TBMs), in which leaf maximum carboxylation capacity (Vc,max ), an important trait for modelling photosynthesis, can be inferred from other easier-to-measure traits. However, whether trait-Vc,max relationships are robust across different forest types remains unclear. Here we used measurements of leaf traits, including one morphological trait (leaf mass per area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf chlorophyll content), one physiological trait (Vc,max ), as well as leaf reflectance spectra, and explored their relationships within and across three contrasting forest types in China. We found weak and forest type-specific relationships between Vc,max and the four morphological and biochemical traits (R2 ≤ 0.15), indicated by significantly changing slopes and intercepts across forest types. By contrast, reflectance spectroscopy effectively collapsed the differences in the trait-Vc,max relationships across three forest biomes into a single robust model for Vc,max (R2 = 0.77), and also accurately estimated the four traits (R2 = 0.75-0.94). These findings challenge the traditional use of the empirical trait-Vc,max relationships in TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an efficient alternative for characterising Vc,max and multitrait variability, with critical insights into ecosystem modelling and functional trait ecology.


Assuntos
Ecossistema , Fotossíntese , Clorofila , Florestas , Nitrogênio , Folhas de Planta , Análise Espectral
3.
Nat Commun ; 14(1): 6460, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833296

RESUMO

Greenspace plays a crucial role in urban ecosystems and has been recognized as a key factor in promoting sustainable and healthy city development. Recent studies have revealed a growing concern about urban greenspace exposure inequality; however, the extent to which urbanization affects human exposure to greenspace and associated inequalities over time remains unclear. Here, we incorporate a Landsat-based 30-meter time-series greenspace mapping and a population-weighted exposure framework to quantify the changes in human exposure to greenspace and associated equality (rather than equity) for 1028 global cities from 2000 to 2018. Results show a substantial increase in physical greenspace coverage and an improvement in human exposure to urban greenspace, leading to a reduction in greenspace exposure inequality over the past two decades. Nevertheless, we observe a contrast in the rate of reduction in greenspace exposure inequality between cities in the Global South and North, with a faster rate of reduction in the Global South, nearly four times that of the Global North. These findings provide valuable insights into the impact of urbanization on urban nature and environmental inequality change and can help inform future city greening efforts.


Assuntos
Ecossistema , Urbanização , Humanos , Parques Recreativos , Cidades , Nível de Saúde
4.
Environ Int ; 166: 107348, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35749992

RESUMO

Greenspace exposure metrics can allow for comparisons of green space supply across time, space, and population groups, and for inferring patterns of variation in opportunities for people to enjoy the health and recreational benefits of nearby green environments. A better understanding of greenspace exposure differences across various spatial scales is a critical requirement for lessening environmental health disparities. However, existing studies are typically limited to a single city or across selected cities, which severely limits the use of results in measuring systemic national and regional scale differences that might need policy at above individual city planning level. To close this knowledge gap, our study aims to provide a holistic assessment of multi-scale greenspace exposure across provinces, cities, counties, towns, and land parcels for the whole of China. We mapped the nationwide fractional greenspace coverage at 10 m with Sentinel-2 satellite imagery, and then modeled population-weighted greenspace exposure to examine variation of greenspace exposure across scales. Our results show a prominent scaling effect of greenspace exposure across multi-scale administrative divisions in China, suggesting, as expected, an increase in heterogeneity with finer spatial scales. We also identify an asymmetric pattern of the difference between greenspace exposure and greenspace coverage, across a geo-demographic demarcation boundary (i.e., along the Heihe-Tengchong Line). In general, the greenspace coverage rate will overestimate more realistic human exposure to greenspace in East China while underestimating in West China. We further found that, in China, more recently urbanized areas have much better greenspace exposure than older urban areas. Our study provides a spatially explicit greenspace exposure metric for discovering multi-scale greenspace exposure difference, which will enhance governments' capacity to quantify environmental justice, detect vulnerable greenspace exposure risk hotspots, prioritize greenspace management at the supra-city scale, and monitor the balance between greenspace supply and demand.

5.
Nat Commun ; 13(1): 4636, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941122

RESUMO

The United Nations specified the need for "providing universal access to greenspace for urban residents" in the 11th Sustainable Development Goal. Yet, how far we are from this goal remains unclear. Here, we develop a methodology incorporating fine-resolution population and greenspace mappings and use the results for 2020 to elucidate global differences in human exposure to greenspace. We identify a contrasting difference of greenspace exposure between Global South and North cities. Global South cities experience only one third of the greenspace exposure level of Global North cities. Greenspace exposure inequality (Gini: 0.47) in Global South cities is nearly twice that of Global North cities (Gini: 0.27). We quantify that 22% of the spatial disparity is associated with greenspace provision, and 53% is associated with joint effects of greenspace provision and spatial configuration. These findings highlight the need for prioritizing greening policies to mitigate environmental disparity and achieve sustainable development goals.


Assuntos
Parques Recreativos , Desenvolvimento Sustentável , Cidades , Humanos , Nações Unidas
6.
Innovation (Camb) ; 2(4): 100154, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34901903

RESUMO

Relationships among productivity, leaf phenology, and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests, which contribute 25% of terrestrial productivity. On the one hand, as moisture availability declines, trees shed leaves to reduce transpiration and the risk of hydraulic failure. On the other hand, increases in light availability promote the replacement of senescent leaves to increase productivity. Here, we provide a comprehensive framework that relates the seasonality of climate, leaf abscission, and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome. The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests. Where rainfall and light covary positively, litterfall and productivity also covary positively and are always greater in the wetter sunnier season. Where rainfall and light covary negatively, litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate; otherwise productivity is smaller in the drier sunnier season. This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA