Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681835

RESUMO

Paracrine factors of human mesenchymal stem cells (hMSCs) have the potential of preventing adverse cardiac remodeling after myocardial infarction (MI). S100A8 and S100A9 are calcium-binding proteins playing essential roles in the regulation of inflammation and fibrous tissue formation, and they might modulate the paracrine effect of hMSCs. We isolated human amniotic mesenchymal stem cells (hAMSCs) and examined the changes in the expression level of regulatory genes of inflammation and fibrosis after hAMSCs were treated with S100A8/A9. The anti-inflammatory and anti-fibrotic effects of hAMSCs pretreated with S100A8/A9 were shown to be superior to those of hAMSCs without S100A8/A9 pretreatment in the cardiomyocyte hypoxia/reoxygenation experiment. We established a murine myocardial ischemia/reperfusion model to compare the therapeutic effects of the conditioned medium of hAMSCs with or without S100A8/A9 pretreatment. We found the hearts administered with a conditioned medium of hAMSCs with S100A8/A9 pretreatment had better left ventricular systolic function on day 7, 14, and 28 after MI. These results suggest S100A8/A9 enhances the paracrine therapeutic effects of hAMSCs in aspects of anti-inflammation, anti-fibrosis, and cardiac function preservation after MI.


Assuntos
Calgranulina A/fisiologia , Calgranulina B/fisiologia , Imunomodulação , Células-Tronco Mesenquimais/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Agentes de Imunomodulação/farmacologia , Inflamação/metabolismo , Isquemia/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo
2.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466434

RESUMO

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (-1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (-1369~+28 nt), Δ2-pGzmg (-939~+28 nt), Δ3-pGzmg (-711~+28 nt) and Δ4-pGzmg (-417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the -417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Granzimas/genética , Fator de Transcrição STAT3/genética , Animais , Blastocisto/fisiologia , Núcleo Celular/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Zigoto/fisiologia
3.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477525

RESUMO

Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing "healthy obese" by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Receptores de Adiponectina/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Adipócitos Bege/metabolismo , Tecido Adiposo Bege/diagnóstico por imagem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Mitocôndrias/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Tomografia por Emissão de Pósitrons
4.
Xenotransplantation ; 27(2): e12569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31777103

RESUMO

BACKGROUND: Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS: To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS: Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS: Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.


Assuntos
Xenoenxertos/imunologia , Mesencéfalo/transplante , Bulbo Olfatório/citologia , Doença de Parkinson/terapia , Transplante Heterólogo , Animais , Transplante de Células/métodos , Modelos Animais de Doenças , Dopamina/metabolismo , Transplante de Tecido Fetal/métodos , Masculino , Mesencéfalo/imunologia , Mesencéfalo/metabolismo , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Transplante Heterólogo/métodos
5.
Chin J Physiol ; 63(6): 286-293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380613

RESUMO

Glucocorticoid (GC)-induced bone loss is the most prevalent form of secondary osteoporosis. Previous studies demonstrated that long-term incubation of dexamethasone (DEX) induced oxidative stress and mitochondrial dysfunctions, consequently leading to apoptosis of differentiated osteoblasts. This DEX-induced cell death might be the main causes of bone loss. We previously described that DEX induced biphasic mitochondrial alternations. As GC affects mitochondrial physiology through several different possible routes, the short-term and long-term effects of GC treatment on mitochondria in the osteoblast have not been carefully characterized. Here, we examined the expression levels of genes that are associated with mitochondrial functions at several different time points after incubation with DEX. Mitochondrial biogenesis-mediated genes nuclear respiratory factor 1 (Nrf1) and Nrf2 were upregulated after 4-h incubation, and then declined after 24-h incubation, suggesting that mitochondrial biogenesis were transiently upregulated by DEX. In contrast, mitochondrial fusion gene optic atrophy 1 (Opa1) and mitofusin 2 (Mfn2) started to be elevated as the biogenesis started to decrease. Finally, the mitochondrial fission increased and apoptosis becomes prominent. Agree with the mitochondrial biphasic alterations hypothesis, the results suggested an early increase of mitochondrial activities and biogenesis upon DEX stimulation to the osteoblasts. The oxidative phosphorylation and inducible nitric oxide synthase levels increased results in oxidative stress accumulation, leading to mitochondrial fusion, and subsequently fission and triggering the apoptosis. Our results indicated that the primary effects of GC on mitochondria are promoting their functions and biogenesis. Mitochondrial breakdown and the activation of the apoptotic pathways appeared to be the secondary effect after long-term treatment.


Assuntos
Biogênese de Organelas , Osteoblastos , Apoptose , Dexametasona/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Mitocôndrias
6.
BMC Vet Res ; 15(1): 191, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174527

RESUMO

BACKGROUND: Autologous platelet concentrates are currently widely used across different areas of regenerative medicine in order to enhance the wound healing process. Although several protocols for platelet concentrates are available, their application remains difficult due to different protocols leading to distinct products with vary potential biological uses. In this study, we attempted to make a platelet patch (PP) using mixtures of platelet rich plasma (PRP) injection and platelet rich fibrin (PRF) to promote wound repair and regeneration. RESULTS: Experiments were performed using a full-thickness wound model in mini-pigs. Autologous PRP, PRF and PP were prepared immediately before creating four full-thickness skin wounds in pigs. We quantified concentrations of platelets, thrombin and various growth factors to ensure that the desired effect can be produced. After surgery, hydrocolloid dressing, PRP injection, PRF and PP was applied to experimentally induced wounds. Application efficacy was evaluated by measurement of wound sizes and histological examination. The results indicated that all wounds showed a significant size reduction. Wound repair efficacy in response to PP treatment exhibited enhanced re-epithelialization compared to PRP and PRF (P < 0.05) and higher wound contraction than did PRF application (P < 0.05). Another aspect, experiment using DsRed transgenic pigs as blood donors demonstrated that leucocytes in PP were incorporated into the wound bed at the end of the study, suggesting that leucocytes activity is stimulated in response to PP application. Safety of the experimental processes was also confirmed by examination of organ biopsies. CONCLUSIONS: We used a mini-pig model to evaluate the efficacy of lab-made PP on induced full-thickness wound healing. Results demonstrated that application of one piece of PP was enough to obtain comparable efficacy versus general utilization of PRP or PRF for wound care. We also demonstrated that leucocytes in PP were incorporated into the wound bed and no safety concerns have been found in the whole experiment. This study provides a novel and feasible method for veterinary or clinical wound care.


Assuntos
Fibrina Rica em Plaquetas , Plasma Rico em Plaquetas , Pele/lesões , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Leucócitos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Suínos , Porco Miniatura , Ferimentos e Lesões/terapia
7.
Chin J Physiol ; 62(2): 70-79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31243177

RESUMO

Glucocorticoid-induced bone loss is the most common form of secondary osteoporosis. This toxic effect has not been efficiently managed, possibly due to the incomplete understanding of the extraordinarily diverse cellular responses induced by glucocorticoid treatment. Previous literatures revealed that high dose of exogenous glucocorticoid triggers apoptosis in osteocytes and osteoblasts. This cell death is associated with glucocorticoid-induced oxidative stress. In this study, we aimed to investigate the mechanisms of glucocorticoid-induced apoptosis in osteoblasts and examine the responses of osteoclasts to the synthetic glucocorticoid, dexamethasone. We demonstrated the biphasic effects of exogenous glucocorticoid on osteoblastic mitochondrial functions and elevated intracellular oxidative stress in a dose- and time-dependent manner. On comparison, similar treatment did not induce mitochondrial dysfunctions and oxidative stress in osteoclasts. The production of reactive oxygen/nitrogen species was decreased in osteoclasts. The differences are not due to varying efficiency of cellular antioxidant system. The opposite effects on nitrogen oxide synthase might provide an explanation, as the expression levels of nos2 gene are suppressed in the osteoclast but elevated in the osteoblast. We further revealed that glucocorticoids have a substantial impact on the osteoblastic mitochondria. Basal respiration rate and ATP production were increased upon 24 h incubation of glucocorticoids. The increase in proton leak and nonmitochondrial respiration suggests a potential source of glucocorticoid-induced oxidative stress. Long-term incubation of glucocorticoids accumulates these detrimental changes and results in cytochrome C release and mitochondrial breakdown, consequently leading to apoptosis in osteoblasts. The mitochondrial alterations might be other sources of glucocorticoid-induced oxidative stress in osteoblasts.


Assuntos
Osteoclastos , Estresse Oxidativo , Apoptose , Glucocorticoides , Osteoblastos , Osteócitos
8.
BMC Genomics ; 19(1): 480, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921224

RESUMO

Following publication of the original article [1], the authors reported that one of the authors' names is spelled incorrectly.

9.
BMC Genomics ; 19(1): 425, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859049

RESUMO

BACKGROUND: The PIWI/piRNA pathway is a conserved machinery important for germ cell development and fertility. This piRNA-guided molecular machinery is best known for repressing derepressed transposable elements (TE) during epigenomic reprogramming. The extent to which piRNAs are involved in modulating transcripts beyond TEs still need to be clarified, and it may be a stage-dependent event. We chose chicken germline as a study model because of the significantly lower TE complexity in the chicken genome compared to mammalian species. RESULTS: We generated high-confidence piRNA candidates in various stages across chicken germline development by 3'-end-methylation-enriched small RNA sequencing and in-house bioinformatics analysis. We observed a significant developmental stage-dependent loss of TE association and a shifting of the ping-pong cycle signatures. Moreover, the stage-dependent reciprocal abundance of LINE retrotransposons, CR1-C, and its associated piRNAs implicated the developmental stage-dependent role of piRNA machinery. The stage dependency of piRNA expression and its potential functions can be better addressed by analyzing the piRNA precursors/clusters. Interestingly, the new piRNA clusters identified from embryonic chicken testes revealed evolutionary conservation between chickens and mammals, which was previously thought to not exist. CONCLUSIONS: In this report, we provided an original chicken RNA resource and proposed an analytical methodology that can be used to investigate stage-dependent changes in piRNA compositions and their potential roles in TE regulation and beyond, and also revealed possible conserved functions of piRNAs in developing germ cells.


Assuntos
Galinhas/genética , RNA Interferente Pequeno/genética , Espermatozoides/citologia , Animais , Linhagem da Célula/genética , Elementos de DNA Transponíveis/genética , Masculino , Espermatozoides/metabolismo
10.
J Cell Sci ; 128(19): 3550-5, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26303200

RESUMO

Cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH) (both of which have two isoforms) can form fiber-like subcellular structures termed 'cytoophidia' under certain circumstances in mammalian cells. Although it has been shown that filamentation of CTPS downregulates its activity by disturbing conformational changes, the activity of IMPDH within cytoophidia is still unclear. Most previous IMPDH cytoophidium studies were performed under conditions involving inhibitors that impair GTP synthesis. Here, we show that IMPDH forms cytoophidia without inhibition of GTP synthesis. First, we find that an elevated intracellular CTP concentration or treatment with 3'-deazauridine, a CTPS inhibitor, promotes IMPDH cytoophidium formation and increases the intracellular GTP pool size. Moreover, restriction of cell growth triggers the disassembly of IMPDH cytoophidia, implying that their presence is correlated with active cell metabolism. Finally, we show that the presence of IMPDH cytoophidia in mouse pancreatic islet cells might correlate with nutrient uptake in the animal. Collectively, our findings reveal that formation of IMPDH cytoophidia reflects upregulation of purine nucleotide synthesis, suggesting that the IMPDH cytoophidium plays a role distinct from that of the CTPS cytoophidium in controlling intracellular nucleotide homeostasis.


Assuntos
IMP Desidrogenase/genética , Regulação para Cima , Animais , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Imunofluorescência , Humanos , IMP Desidrogenase/metabolismo , Camundongos , Nucleotídeos/metabolismo
11.
Development ; 141(12): 2402-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850856

RESUMO

The ability of adult stem cells to reside in a quiescent state is crucial for preventing premature exhaustion of the stem cell pool. However, the intrinsic epigenetic factors that regulate spermatogonial stem cell quiescence are largely unknown. Here, we investigate in mice how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1(+) spermatogonial stem/progenitor cells (SPCs) constituted a DNMT3L-expressing population in postnatal testes. DNMT3L influenced the stability of promyelocytic leukemia zinc finger (PLZF), potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Reduced PLZF in Dnmt3l KO THY1(+) cells released its antagonist, Sal-like protein 4A (SALL4A), which is associated with overactivated ERK and AKT signaling cascades. Furthermore, DNMT3L was required to suppress the cell proliferation-promoting factor SALL4B in THY1(+) SPCs and to prevent premature stem cell exhaustion. Our results indicate that DNMT3L is required to delicately balance the cycling and quiescence of SPCs. These findings reveal a novel role for DNMT3L in modulating postnatal SPC cell fate decisions.


Assuntos
Células-Tronco Adultas/metabolismo , DNA (Citosina-5-)-Metiltransferases/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Espermatogônias/metabolismo , Alelos , Animais , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
12.
Chin J Physiol ; 60(6): 345-352, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29241308

RESUMO

Recently, stem cells have offered an alternative treatment for inflammatory bowel disease (IBD) or colitis to overcome the poor outcomes associated with current therapies. Amniotic fluid-derived stem cells (AFSCs) have the potential for the regeneration of impaired organs and the recovery of normal physiologic functions of damaged tissues without ethical concerns or risk of tumor formation. In this work, we aimed to examine the therapeutic effects of infusion of porcine AFSCs (pAFSCs) in dextran sulfate sodium (DSS)-induced colitis in mice. Treatment with pAFSCs was shown to inhibit the shortening of the colon after induction of colitis and dramatically ameliorated the body weightloss induced by the DSS treatment. In addition, pAFSCs could also reduce the extent of the inflamed area represented by epithelial mesenchymal transformation in the colitis mice. The levels of the inflammatory cytokines interleukin 6 (IL-6) and interferon gamma (IFN-γ) were also reduced in colitis mice transplanted with pAFSCs. In conclusion, pAFSCs can ameliorate experimental colitis in mice, suggesting that they may be a potential treatment for IBD or colitis.


Assuntos
Líquido Amniótico/citologia , Colite/terapia , Células-Tronco Embrionárias/transplante , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos ICR , Suínos
13.
Trop Anim Health Prod ; 49(6): 1157-1162, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28528496

RESUMO

Our aim was to investigate insemination techniques in order to improve pregnancy rates of artificial insemination (AI) using sex-sorted semen (sexed AI) in cattle in tropical and subtropical (T/ST) regions. In T/ST regions, the pregnancy rates by sexed AI are reportedly the lowest in the hottest months of the year, with less than 15% in cows and 35-40% in heifers (PMID 24048822). We compared sexed AI by depositing the semen into the uterine body (UB-AI, n = 12) versus the unilateral uterine horn (UUH-AI, n = 14) of pre-ovulation heifers. The ovary and follicle were assessed by rectal ultrasound before AI. After insemination, pregnancy was determined by ultrasound at approximately 40 days and approximately 70 days. In the present study, we demonstrated that high pregnancy rates (>70%) by sexed AI in the hottest season in a subtropical region such as Taiwan can be achieved when heifers with pre-ovulation follicles are used. The overall pregnancy rates were 54% higher in the UUH-AI (71%) group than in the UB-AI (42%) group (P = 0.06), examined on approximately 40 days post-sexed AI. Surprisingly, however, the pregnancy outcome appeared to be higher in the hot season (62%) than in the cool season (46%) although this difference was not statistically significant. Based on the present study, we recommend that cattle breeders perform UUH-AI using sex-sorted semen for heifers with pre-ovulation follicles in order to achieve satisfactory pregnancy outcome in the hot seasons in T/ST regions.


Assuntos
Inseminação Artificial/veterinária , Análise do Sêmen/veterinária , Pré-Seleção do Sexo/veterinária , Animais , Bovinos , Feminino , Temperatura Alta , Inseminação Artificial/fisiologia , Estações do Ano , Taiwan , Clima Tropical
14.
Reproduction ; 150(4): 245-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159833

RESUMO

Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Células Híbridas , Técnicas de Transferência Nuclear , Animais , Blastocisto , Reprogramação Celular , Clonagem de Organismos , Elementos de DNA Transponíveis , Epigênese Genética , Feminino , Fibroblastos , Inativação Gênica , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 3 de Transcrição de Octâmero/biossíntese , Gravidez , Inibidores da Síntese de Proteínas/farmacologia
15.
J Formos Med Assoc ; 114(11): 1105-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24875587

RESUMO

BACKGROUND/PURPOSE: Amniotic fluid-derived progenitor cells (AFPCs) are oligopotent and shed from the fetus into the amniotic fluid. It was reported that AFPCs express stem cell-like markers and are capable of differentiating into specific cell type in in vitro experiments. However, no study has fully investigated the potentiality and destiny of these cells in in vivo experiments. METHODS: Ds-red transgenic mice (on Day 13.5 of pregnancy) were transplanted in utero with enhanced green fluorescent protein-labeled mouse AFPC (EGFP-mAFPCs). After birth, baby mice were euthanized at 3-week intervals beginning 3 weeks postnatally, and the specimens were examined by polymerase chain reaction, histology, and flow cytometry. RESULTS: Our results demonstrate the transplantability of mAFPCs into all three germ layers and the potential of mAFPCs in the study of progenitor cell homing, differentiation, and function. Engraftment of EGFP-mAFPCs was detected in the intestine, kidney, muscle, skin, bladder, heart, stomach, etc., at 3 weeks after delivery. CONCLUSION: This model using EGFP-mAFPCs injected in utero may provide an ideal method for determining the fate of transplanted cells in recipients and these findings may justify a clinical trial of in utero transplantation during gestation for patients who have inherited genetic disorders.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Camadas Germinativas/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Biomarcadores/análise , Feminino , Proteínas de Fluorescência Verde/análise , Camundongos , Camundongos Transgênicos , Gravidez
16.
Chin J Physiol ; 58(1): 27-37, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25687489

RESUMO

DsRed-monomer is an enhanced red fluorescent protein that may serve as a marker for studies in biotechnology and cell biology. Since the ICR mouse strain is a widely utilized outbred strain for oncology, toxicology, vaccine development and for aging studies, the objective of this study was to produce a DsRed-monomer transgenic mouse by means of pronuclear micro-injection of a vector driven by the cytomegalovirus (CMV) enhancer/chicken beta-actin promoter. Four transgenic mice were successfully produced, one of which expressed the DsRed-monomer protein in every tissue, although at varying levels. High expression levels were observed in the heart, pancreas and muscle. Moreover, amniotic fluid-derived progenitor cells, which also expressed the DsRed-monomer protein, could be collected from the DsRed-monomer- harboring ICR mice. As compared to wild-type mice, a few biochemical and histological dissimilarities were found in the DsRed-monomer transgenic mice, including the presence of intra-cytoplasmic eosinophilic threadlike materials in the acinar cells. Taken together, transgenic mice stably expressing DsRed-monomer can be produced using pronuclear micro-injection; however, expression of the DsRed-monomer gene or its insertion position may lead to minor influences.


Assuntos
Corantes Fluorescentes , Proteínas Luminescentes/genética , Camundongos Transgênicos , Transgenes , Animais , Camundongos , Camundongos Endogâmicos ICR , Microinjeções
17.
Molecules ; 20(2): 2786-801, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25671364

RESUMO

Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Resistência à Insulina , Aldeído Pirúvico/toxicidade , Escopoletina/farmacologia , Animais , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Masculino , Ratos , Ratos Wistar
18.
Acta Cardiol Sin ; 31(3): 209-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27122872

RESUMO

BACKGROUND: Amniotic fluid-derived stem cells (AFSCs) possess optimal differentiation potential and are a promising resource for cell therapy and tissue engineering. Mouse is a good model to be studied for pre-clinical research. METHODS: In this study, we successfully established enhanced green fluorescent protein mouse-derived amniotic fluid stem cells (EGFP-mAFSCs) and investigated whether EGFP-mAFSCs possess the ability to differentiate into cardiomyocytes by in vitro culture. We evaluated stem-cell differentiation using immunofluorescence. RESULTS: This study showed that EGFP-mAFSCs can give rise to spontaneously beating cardiomyocyte-like cells expressing the specific markers c-kit, myosin heavy chain, and cardiac troponin I. CONCLUSIONS: We demonstrated that mAFSCs have the in vitro propensity to acquire a cardiomyogenic phenotype and to a certain extent cardiomyocytes; however the process efficiency which gives rise to cardiomyocyte-like cells remains quite low (2 out of 10 were found). KEY WORDS: Amniotic fluid; Cardiomyocytes; In vitro differentiation; Stem cells.

19.
Prenat Diagn ; 34(5): 487-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464940

RESUMO

OBJECTIVES: Amniotic fluid stem cells (AFSCs) are derived from the amniotic fluid of the developing fetus and can give rise to diverse differentiated cells of ectoderm, mesoderm, and endoderm lineages. Intrauterine transplantation is an approach used to cure inherited genetic fetal defects during the gestation period of pregnant dams. Certain disease such as osteogenesis imperfecta was successfully treated in affected fetal mice using this method. However, the donor cell destiny remains uncertain. METHODS: The purpose of this study was to investigate the biodistribution and cell fate of Ds-red-harboring porcine AFSCs (Ds-red pAFSCs) after intrauterine transplantation into enhanced green fluorescent protein-harboring fetuses of pregnant mice. Pregnant mice (12.5 days) underwent open laparotomy with intrauterine pAFSC transplantation (5 × 10(4) cells per pup) into fetal peritoneal cavity. RESULTS: Three weeks after birth, the mice were sacrificed. Several samples from different organs were obtained for histological examination and flow cytometric analysis. Ds-red pAFSCs migrated most frequently into the intestines. Furthermore, enhanced green fluorescent protein and red fluorescent protein signals were co-expressed in the intestine and liver cells via immunohistochemistry studies. CONCLUSION: In utero xenotransplantation of pAFSCs fused with recipient intestinal cells instead of differentiating or maintaining the undifferentiated status in the tissue.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/citologia , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/citologia , Fígado/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Fusão Celular , Feminino , Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Suínos , Transplante Heterólogo
20.
Heliyon ; 10(7): e28398, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560255

RESUMO

Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential. This study aimed to explore the feasibility of chemically inducing human amniotic membrane MSCs (hAMSCs) to differentiate into cardiomyocytes in vitro. Human amniotic membrane (AM) samples were obtained from routine cesarean sections at Far Eastern Memorial Hospital. The isolated cells exhibited spindle-shaped morphology and expressed surface antigens CD73, CD90, CD105, and CD44, while lacking expression of CD19, CD11b, CD19, CD45, and HLA-DR. The SSEA-1, SSEA-3, and SSEA-4 markers were also positive, and the cells displayed the ability for tri-lineage differentiation into adipocytes, chondrocytes, and osteoblasts. The expression levels of MLC2v, Nkx2.5, and MyoD were analyzed using qPCR after applying various protocols for chemical induction, including BMP4, ActivinA, 5-azacytidine, CHIR99021, and IWP2 on hAMSCs. The group treated with 5 ng/ml BMP4, 10 ng/ml Activin A, 10 µM 5-azacytidine, 7.5 µM CHIR99021, and 5 µM IWP 2 expressed the highest levels of these genes. Furthermore, immunofluorescence staining demonstrated the expression of α-actinin and Troponin T in this group. In conclusion, this study demonstrated that hAMSCs can be chemically induced to differentiate into cardiomyocyte-like cells in vitro. However, to improve the functionality of the differentiated cells, further investigation of inductive protocols and regimens is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA