Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Physiol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996044

RESUMO

Three key factors determine yield in rice (Oryza sativa): panicle number, grain number, and grain weight. Panicle number is strongly associated with tiller number. Although many genes regulating tillering have been identified, whether Dof proteins are involved in controlling plant architecture remains unknown. The dwarf and less tillers on chromosome 3 (dlt3) rice mutant produces fewer tillers than the wild type. We cloned DLT3, which encodes a Dof protein that interacts with MONOCULM 3 (MOC3) in vivo and in vitro and recruits MOC1, forming a DLT3-MOC3-MOC1 complex. DLT3 binds to the promoter of FLORAL ORGAN NUMBER 1 (FON1) to activate its transcription and positively regulate tiller number. The overexpression of MOC1, MOC3, or FON1 in the dlt3 mutant increased tiller number. Collectively, these results suggest a model in which DLT3 regulates tiller number by maintaining the expression of MOC1, MOC3, and FON1. We discovered that DLT3 underwent directional selection in the Xian/indica and Geng/japonica populations during rice domestication. To provide genetic resources for breeding varieties with optimal panicle numbers, we performed large-scale diversity sequencing of the 1080-bp DLT3 coding region of 531 accessions from different countries and regions. Haplotype analysis showed that the superior haplotype, DLT3H1, produced the most tillers, while haplotype DLT3H6 produced the fewest tillers. Our study provides important germplasm resources for breeding super high-yielding rice varieties with combinations of superior haplotypes in different target genes, which will help overcome the challenge of food and nutritional security in the future.

2.
Theor Appl Genet ; 137(7): 162, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884792

RESUMO

KEY MESSAGE: OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Fotoperíodo , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
3.
J Exp Bot ; 74(5): 1501-1516, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36651501

RESUMO

The seed-setting rate has a significant effect on grain yield in rice (Oryza sativa L.). Embryo sac development is essential for seed setting; however, the molecular mechanism underlying this process remains unclear. Here, we isolated defective embryo sac1 (des1), a rice mutant with a low seed-setting rate. Cytological examination showed degenerated embryo sacs and reduced fertilization capacity in des1. Map-based cloning revealed a nonsense mutation in OsDES1, a gene that encodes a putative nuclear envelope membrane protein (NEMP)-domain-containing protein that is preferentially expressed in pistils. The OsDES1 mutation disrupts the normal formation of functional megaspores, which ultimately results in a degenerated embryo sac in des1. Reciprocal crosses showed that fertilization is abnormal and that the female reproductive organ is defective in des1. OsDES1 interacts with LONELY GUY (LOG), a cytokinin-activating enzyme that acts in the final step of cytokinin synthesis; mutation of LOG led to defective female reproductive organ development. These results demonstrate that OsDES1 functions in determining the rice seed-setting rate by regulating embryo sac development and fertilization. Our study sheds light on the function of NEMP-type proteins in rice reproductive development.


Assuntos
Oryza , Sementes , Grão Comestível/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Theor Appl Genet ; 136(7): 160, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347301

RESUMO

KEY MESSAGE: TAC1 is involved in photoperiodic and gravitropic responses to modulate rice dynamic plant architecture likely by affecting endogenous auxin distribution, which could explain TAC1 widespread distribution in indica rice. Plants experience a changing environment throughout their growth, which requires dynamic adjustments of plant architecture in response to these environmental cues. Our previous study demonstrated that Tiller Angle Control 1 (TAC1) modulates dynamic changes in plant architecture in rice; however, the underlying regulatory mechanisms remain largely unknown. In this study, we show that TAC1 regulates plant architecture in an expression dose-dependent manner, is highly expressed in stems, and exhibits dynamic expression in tiller bases during the growth period. Photoperiodic treatments revealed that TAC1 expression shows circadian rhythm and is more abundant during the dark period than during the light period and under short-day conditions than under long-day conditions. Therefore, it contributes to dynamic plant architecture under long-day conditions and loose plant architecture under short-day conditions. Gravity treatments showed that TAC1 is induced by gravistimulation and negatively regulates shoot gravitropism, likely by affecting auxin distribution. Notably, the tested indica rice containing TAC1 displayed dynamic plant architecture under natural long-day conditions, likely explaining the widespread distribution of TAC1 in indica rice. Our results provide new insights into TAC1-mediated regulatory mechanisms for dynamic changes in rice plant architecture.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Fotoperíodo , Gravitação , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563391

RESUMO

Plant architecture is dynamic as plants develop. Although many genes associated with specific plant architecture components have been identified in rice, genes related to underlying dynamic changes in plant architecture remain largely unknown. Here, we identified two highly similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and RIL-Compact (C). The dynamic plant architecture of RIL-D is characterized by 'loosetiller angle (tillering stage)-compact (heading stage)-loosecurved stem (maturing stage)' under natural long-day (NLD) conditions, and 'loosetiller angle (tillering and heading stages)-loosetiller angle and curved stem (maturing stage)' under natural short-day (NSD) conditions, while RIL-C exhibits a compact plant architecture both under NLD and NSD conditions throughout growth. The candidate locus was mapped to the chromosome 9 tail via the rice 8K chip assay and map-based cloning. Sequencing, complementary tests, and gene knockout tests demonstrated that Tiller Angle Control 1 (TAC1) is responsible for dynamic plant architecture in RIL-D. Moreover, TAC1 positively regulates loose plant architecture, and high TAC1 expression cannot influence the expression of tested tiller-angle-related genes. Our results reveal that TAC1 is necessary for the dynamic changes in plant architecture, which can guide improvements in plant architecture during the modern super rice breeding.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Theor Appl Genet ; 134(1): 213-227, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33001260

RESUMO

KEY MESSAGE: qRN5a, a novel QTL for increasing root number under low K in rice, was fine mapped to a 48.8-kb region on chromosome 5, and LOC_Os05g27980 is the most likely candidate gene. Potassium (K) is a mineral nutrient essential for plant growth and development, but the molecular mechanism for low-K (LK) tolerance in rice remains poorly understood. In our previous study, the quantitative trait locus (QTL) qRN5a for root number (RN) under LK was identified in the chromosome segment substitution line CSSL35 carrying segments from XieqingzaoB in the genetic background of Zhonghui9308 (ZH9308). CSSL35 developed more roots than ZH9308 under LK at the seedling stage, and qRN5a was initially located within a 1,023-kb genomic region. In this study, to understand the molecular basis of qRN5a, a large F2:3 (BC5F2:3) population obtained from crossing CSSL35 and ZH9308 was constructed for fine mapping. High-resolution linkage analysis narrowed down qRN5a to a 48.8-kb interval flanked by markers A99 and A139. Seven putative candidate genes were annotated in the delimited region, and three genes (Os05g0346700, LOC_Os05g27980, and LOC_Os05g28000) had nonsynonymous single-nucleotide polymorphisms in the coding sequence between the two parents. Expression analysis suggests that LOC_Os05g27980, which encodes a LATERAL ORGAN BOUNDARIES domain-containing protein, is a positive regulator of RN under LK and is the most likely candidate gene for qRN5a. Moreover, we found that qRN5a promotes expression of OsIAA23 and represses OsHAK5 expression in root tissues to promote root initiation in CSSL35 under LK conditions. Additional investigations on OsHAK5 in rice are needed to elucidate the basis of changing root architecture under different K+ concentrations. qRN5a is useful for marker-assisted selection to develop an ideotype with improved root architecture in rice under K deficiency.


Assuntos
Oryza/genética , Raízes de Plantas/crescimento & desenvolvimento , Potássio , Locos de Características Quantitativas , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Mutação INDEL , Oryza/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
7.
Theor Appl Genet ; 134(2): 453-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33089345

RESUMO

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Mutação , Oryza/genética , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética
8.
Plant Cell Rep ; 40(5): 835-850, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730215

RESUMO

KEY MESSAGE: The R89 is essential for the kinase activity of OsMPK6 which negatively regulates cell death and defense response in rice. Mitogen-activated protein kinase cascade plays critical roles in various vital activities, including the plant immune response, but the mechanisms remain elusive. Here, we identified and characterized a rice lesion mimic mutant osmpk6 which displayed hypersensitive response-like lesions in company with cell death and hydrogen peroxide hyperaccumulation. Map-based cloning and complementation demonstrated that a G702A single-base substitution in the second exon of OsMPK6 led to the lesion mimic phenotype of the osmpk6 mutant. OsMPK6 encodes a cytoplasm and nucleus-targeted mitogen-activated protein kinase and is expressed in the various organs. Compared with wild type, the osmpk6 mutant exhibited high resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), likely due to the increased ROS production induced by flg22 and chitin and up-regulated expression of genes involved in pathogenesis, as well as activation of SA and JA signaling pathways after inoculation. By contrast, the OsMPK6-overexpression line (OE-1) was found to be susceptible to the bacterial pathogens, indicating that OsMPK6 negatively regulated Xoo resistance. Furthermore, the G702A single-base substitution caused a R89K mutation at both polypeptide substrate-binding site and active site of OsMPK6, and kinase activity assay revealed that the R89K mutation led to reduction of OsMPK6 activity, suggesting that the R89 is essential for the function of OsMPK6. Our findings provide insight into a vital role of the R89 of OsMPK6 in regulating cell death and defense response in rice.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Xanthomonas/patogenicidade , Quitina/genética , Quitina/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Plant J ; 99(5): 844-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021015

RESUMO

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/metabolismo , Biopolímeros , Carotenoides , Fragmentação do DNA , Regulação da Expressão Gênica de Plantas , Infertilidade/genética , Fenótipo , Pólen/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
10.
Plant Cell ; 29(2): 345-359, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28100706

RESUMO

Cullin3-based RING E3 ubiquitin ligases (CRL3), composed of Cullin3 (CUL3), RBX1, and BTB proteins, are involved in plant immunity, but the function of CUL3 in the process is largely unknown. Here, we show that rice (Oryza sativa) OsCUL3a is important for the regulation of cell death and immunity. The rice lesion mimic mutant oscul3a displays a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in pathogenesis-related gene expression as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. We cloned the OsCUL3a gene via a map-based strategy and found that the lesion mimic phenotype of oscul3a is associated with the early termination of OsCUL3a protein. Interaction assays showed that OsCUL3a interacts with both OsRBX1a and OsRBX1b to form a multisubunit CRL in rice. Strikingly, OsCUL3a interacts with and degrades OsNPR1, which acts as a positive regulator of cell death in rice. Accumulation of OsNPR1 protein is greater in the oscul3a mutant than in the wild type. Furthermore, the oscul3a osnpr1 double mutant does not exhibit the lesion mimic phenotype of the oscul3a mutant. Our data demonstrate that OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Morte Celular/genética , Clonagem Molecular , Técnicas de Inativação de Genes , Oryza/citologia , Oryza/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Plant J ; 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901843

RESUMO

Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2 O2 ) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence-associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O-methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild-type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild-type rice. Moreover, overexpression of OsMTS1 in the wild-type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.

12.
Plant Mol Biol ; 99(1-2): 175-191, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30610522

RESUMO

KEY MESSAGE: OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation. Previous study has shown that PTC1 plays a critical role in the regulation of tapetal PCD. However, it remained unclear how this occurs. To further investigate the role of this gene in rice, we used CRISPR/Cas9 system to generate the homozygous mutant named as osms1, which showed complete male sterility with slightly yellow and small anthers, as well as invisible pollen grains. In addition, cytological observation revealed delayed tapetal PCD, defective pollen exine formation and a lack of DNA fragmentation according to a TUNEL analysis in the anthers of osms1 mutant. OsMS1, which encodes a PHD finger protein, was located in the nucleus of rice protoplasts and functioned as a transcription factor with transcriptional activation activity. Y2H and BiFC assays demonstrated that OsMS1 can interact with OsMADS15 and TDR INTERACTING PROTEIN2 (TIP2). It has been reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated tapetal PCD in rice. Results of qPCR suggested that the expression of the genes associated with tapetal PCD and pollen wall biosynthesis, such as EAT1, AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken together, our results demonstrate that the interaction of OsMS1 with known tapetal regulatory factors through its PHD finger regulates tapetal PCD and pollen exine formation in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Pólen/genética , Fatores de Transcrição/metabolismo , Mutação , Oryza/citologia , Oryza/crescimento & desenvolvimento , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
13.
BMC Plant Biol ; 19(1): 12, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621596

RESUMO

BACKGROUND: Nitrogen (N) is a major input cost in rice production, in addition to causing severe pollution to agricultural and ecological environments. Root dry weight has been considered the most important component related to crop yields than the other root traits. Therefore, development of rice varieties/lines with low input of N fertilizer and higher root traits are essential for sustainable rice production. RESULTS: In this context, a main effect quantitative trait locus qRDWN6XB on the long arm of chromosome 6 which positively confers tolerance to N deficiency in the Indica rice variety XieqingzaoB, was identified using a chromosomal segment substitution line (CSSL) population. qRDWN6XB was determined to be located near marker InD90 on chromosome 6 based on association analysis of phenotype data from three N levels and 120 polymorphic molecular markers. The target chromosomal segment substitution line CSSL45, which has the higher root dry weight (RDW) than indica cultivar Zhonghui9308 and carry qRDWN6XB, was selected for further study. A BC5F2:3 population derived from a cross between CSSL45 and Zhonghui9308 was constructed. To fine-map qRDWN6XB, we used the homozygous recombinant plants and ultimately this locus was narrowed to a 52.3-kb between markers ND-4 and RM19771, which contains nine candidate genes in this region. One of these genes, LOC_Os06g15910 as a potassium transporter was considered a strong candidate gene for the RDWN6XB locus. CONCLUSIONS: The identification of qRDWN6XB provides a new genetic resource for breeding rice varieties and a starting point to improve grain yield despite the decreased input of N fertilizers. The newly developed and tightly linked InDel marker ND-4 will be useful to improve the root system architecture under low N by marker-assisted selection (MAS) in rice breeding programs.


Assuntos
Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Nitrogênio/deficiência , Oryza/genética , Proteínas de Plantas/genética
14.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466256

RESUMO

One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.


Assuntos
Oryza/genética , Melhoramento Vegetal/métodos , Estresse Fisiológico , Triticum/genética , Oryza/fisiologia , Característica Quantitativa Herdável , Triticum/fisiologia
15.
Biochem Biophys Res Commun ; 495(1): 1349-1355, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154991

RESUMO

The photoperiodic flowering pathway is one of the most important regulatory networks controlling flowering time in rice (Oryza sativa L.). Rice is a facultative short-day (SD) plant; flowering is promoted under inductive SD conditions and delayed under non-inductive long-day (LD) conditions. In rice, flowering inhibitor genes play an important role in maintaining the trade-off between reproduction and yield. In this study, we identified a novel floral inhibitor, OsCOL15, which encodes a CONSTANS-like transcription factor. Consistent with a function in transcriptional regulation, OsCOL15 localized to the nucleus. Moreover, OsCOL15 had transcriptional activation activity, and the central region of the protein between the B-box and CCT domains was required for this activity. We determined that OsCOL15 is most highly expressed in young organs and exhibits a diurnal expression pattern typical of other floral regulators. Overexpression of OsCOL15 resulted in a delayed flowering phenotype under both SD and LD conditions. Real-time quantitative RT-PCR analysis of flowering regulator gene expression suggested that OsCOL15 suppresses flowering by up-regulating the flowering repressor Grain number, plant height and heading date 7 (Ghd7) and down-regulating the flowering activator Rice Indeterminate 1 (RID1), thus leading to the down-regulation of the flowering activators Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T1. These results demonstrate that OsCOL15 is an important floral regulator acting upstream of Ghd7 and RID1 in the rice photoperiodic flowering-time regulatory network.


Assuntos
Ritmo Circadiano/fisiologia , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotoperíodo
16.
Int J Mol Sci ; 19(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757987

RESUMO

Phosphorus (P) is the essential macro-element supporting rice productivity. Quantitative trait loci (QTL) underlying related traits at the seedling stage under two different phosphorus levels was investigated in rice using a population of 76 Chromosomal Sequence Substitution Lines (CSSLs) derived from a cross between the maintainer variety XieqingzaoB (P stress tolerant) and the restorer variety Zhonghui9308 (P stress sensitive); the parents of super hybrid rice Xieyou9308. A genetic linkage map with 120 DNA marker loci was constructed. At logarithmic odd (LOD) value of 2.0, a total of seven QTLs were detected for studied traits under two P levels and their relative ratio. The LOD values ranged from 2.00 to 3.32 and explaining 10.82% to 18.46% of phenotypic variation. Three QTLs were detected under low phosphorus (P-), one under normal (P⁺) and three under their relative ratio (P-/P⁺) on the rice chromosomes 3, 5, 6, 8 and 10. No significant QTLs were found for shoot dry weight (SDW) and total dry weight (TDW). The pleiotropic QTLs influencing root number (qRN5) and root dry weight (qRDW5) as novel QTLs under P- level were detected near marker RM3638 on chromosome 5, which considered to directly contributing to phosphorus deficiency tolerance in rice. These QTLs need further analysis, including the fine mapping and cloning, which may use in molecular marker assisted breeding.


Assuntos
Genômica , Oryza/fisiologia , Fósforo/deficiência , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Adaptação Biológica , Quimera , Genômica/métodos , Genótipo , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estresse Fisiológico
17.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042352

RESUMO

Abnormally developed endosperm strongly affects rice (Oryza sativa) appearance quality and grain weight. Endosperm formation is a complex process, and although many enzymes and related regulators have been identified, many other related factors remain largely unknown. Here, we report the isolation and characterization of a recessive mutation of White Belly 1 (WB1), which regulates rice endosperm development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant develops a white-belly endosperm and abnormal starch granules in the inner portion of white grains. Representative of the white-belly phenotype, grains of wb1 showed a higher grain chalkiness rate and degree and a lower 1000-grain weight (decreased by ~34%), in comparison with that of Wild Type (WT). The contents of amylose and amylopectin in wb1 significantly decreased, and its physical properties were also altered. We adopted the modified MutMap method to identify 2.52 Mb candidate regions with a high specificity, where we detected 275 SNPs in chromosome 4. Finally, we identified 19 SNPs at 12 candidate genes. Transcript levels analysis of all candidate genes showed that WB1 (Os04t0413500), encoding a cell-wall invertase, was the most probable cause of white-belly endosperm phenotype. Switching off WB1 with the CRISPR/cas9 system in Japonica cv. Nipponbare demonstrates that WB1 regulates endosperm development and that different mutations of WB1 disrupt its biological function. All of these results taken together suggest that the wb1 mutant is controlled by the mutation of WB1, and that the modified MutMap method is feasible to identify mutant genes, and could promote genetic improvement in rice.


Assuntos
Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , beta-Frutofuranosidase/genética , Amilopectina/análise , Amilose/análise , Sistemas CRISPR-Cas , Endosperma/genética , Qualidade dos Alimentos , Biblioteca Gênica , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Amido/metabolismo , Grãos Integrais/metabolismo , beta-Frutofuranosidase/metabolismo
18.
Theor Appl Genet ; 130(1): 247-258, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27677631

RESUMO

KEY MESSAGE: A major QTL for heading date, qHD5, was fine-mapped to a 52.59-kb region on the short arm of rice chromosome 5. Heading date (HD) is one of the most important traits that enables rice to adapt to seasonal differences and specific growth conditions in diverse growing regions. In this study, a major-effect quantitative trait locus (QTL), qHD5, was resolved as a single Medelian factor that causes NIL(BG1) and NIL(XLJ) (two near-isogenic lines (NILs) used in our study) to have at a minimum of 10-day difference in HD under both long-day and short-day conditions in rice. qHD5 was initially mapped to a 309.52-kb genomic region in our previous study. Here, using an advanced BC4F3 population and map-based cloning, we further narrowed the location of qHD5 to a 52.59-kb region between the H71 and RD502 markers. Sequence analysis revealed that Os05g03040, which putatively encodes an AP2 (APETALA2) transcription factor, has six single nucleotide polymorphisms (SNPs) between NIL(BG1) and NIL(XLJ). On this basis, this gene was concluded to be the most probable candidate gene for qHD5. Our results also showed that Hd3a, RFT1, Hd1, Ehd1, and Ghd7 were differentially expressed in the two NILs. Moreover, qHD5 was found to affect yield-related traits such as flag leaf width, flag leaf length, branch number, and 1000-grain weight.


Assuntos
Grão Comestível/genética , Pleiotropia Genética , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , DNA de Plantas/genética , Genes de Plantas , Fenótipo , Fotoperíodo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
PLoS Genet ; 9(2): e1003281, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437005

RESUMO

Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary conserved in short-day plants (Hd1-Hd3a in rice). However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4). ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.


Assuntos
Flores , Proteínas Nucleares/genética , Oryza , Fotoperíodo , Proteínas de Plantas , Transativadores/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(8): 2775-80, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23388640

RESUMO

Flowering time (i.e., heading date in crops) is an important ecological trait that determines growing seasons and regional adaptability of plants to specific natural environments. Rice (Oryza sativa L.) is a short-day plant that originated in the tropics. Increasing evidence suggests that the northward expansion of cultivated rice was accompanied by human selection of the heading date under noninductive long-day (LD) conditions. We report here the molecular cloning and characterization of DTH2 (for Days to heading on chromosome 2), a minor-effect quantitative trait locus that promotes heading under LD conditions. We show that DTH2 encodes a CONSTANS-like protein that promotes heading by inducing the florigen genes Heading date 3a and RICE FLOWERING LOCUS T 1, and it acts independently of the known floral integrators Heading date 1 and Early heading date 1. Moreover, association analysis and transgenic experiments identified two functional nucleotide polymorphisms in DTH2 that correlated with early heading and increased reproductive fitness under natural LD conditions in northern Asia. Our combined population genetics and network analyses suggest that DTH2 likely represents a target of human selection for adaptation to LD conditions during rice domestication and/or improvement, demonstrating an important role of minor-effect quantitative trait loci in crop adaptation and breeding.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Oryza/genética , Polimorfismo Genético , Ásia , Ritmo Circadiano , Clonagem Molecular , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA