RESUMO
Karst groundwater, an important water source, is often highly influenced by human impacts, causing environmental damage and threats to human health. However, studies on the anthropogenic influences on the hydrogeochemical evolution of karst groundwater are relatively rare. To assess hydrogeochemical formation and evolution, we focused on a typical karst groundwater system (Jinan, China) which is composed of cold groundwater (av. temperature 13-17 °C), springs and geothermal water (av. temperature > 30 °C) and is significantly affected by human activities. The study was performed by means of water samples collecting and analyzing and isotope analysis (2H, 18O and 14C). The statistical analysis and inverse models were also applied to further understand geochemical processes and anthropogenic influences. The 2H, 18O and 14C results indicate that the cold karst groundwater is easily influenced and contaminated by the local environment, while geothermal water is relatively old with a slow rate of recharge. The hydrochemical types of cold karst groundwater are mainly HCO3-Ca and HCO3·SO4-Ca, while geothermal water hydrochemical types are SO4-Ca·Na and SO4-Ca. Groundwater Ca2+, Mg2+, HCO3- and SO42- are mainly controlled by carbonate equilibrium, gypsum dissolution and dedolomitization. Groundwater Na+, K+ and Cl- are mainly derived from halite dissolution, and in geothermal water, they are also affected by incongruent dissolution of albite and K-feldspar. Anthropogenic nitrogen produces ammonium resulting in nitrification and reduction in CO2(g) consumption and HCO3- release from carbonate dissolution. Principal component analysis and inverse models also indicate that nitrification and denitrification have significantly affected water-rock interactions. Our study suggests that karst groundwater quality is dominated by water-rock interactions and elucidates the influence of anthropogenic nitrogen. We believe that this paper will be a good reference point to study anthropogenic influences on the groundwater environment and to protect karst groundwater globally.
Assuntos
Água Subterrânea/análise , Água Subterrânea/química , Radioisótopos de Carbono/análise , Carbonatos/análise , China , Cloretos/análise , Monitoramento Ambiental/métodos , Humanos , Hidrologia/métodos , Hidrologia/estatística & dados numéricos , Modelos Teóricos , Nascentes Naturais , Isótopos de Oxigênio/análise , Potássio/análise , Análise de Componente Principal , Sódio/análise , Temperatura , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
Groundwater, a vital source of water supply, is currently experiencing a pollution crisis that poses a significant risk to human health. To understand the hydrochemical formation mechanisms, quality and risk to human health of groundwater in the upper reaches of the Wulong River basin, 63 sets of groundwater samples were collected and analyzed. A combination of mathematical statistics, correlation analysis, Gibbs diagram, ion ratio, and cation exchange were comprehensively employed for hydrochemical analysis, and further water quality index (WQI) and human health risk assessment were conducted. The results indicate that groundwater is generally neutral to weakly alkaline. The dominant cations in the groundwater are Ca2+ and Mg2+, while the main anions are HCO3- and SO42-. The hydrochemical types of groundwater mainly include HCO3·SO4-Ca, HCO3-Ca and HCO3-Na. The diverse hydrochemical types are mainly due to the fractured and discontinuous nature of the aquifers. The hydrochemical characteristics are influenced by the dissolution of silicate and carbonate minerals, cation exchange processes, and anthropogenic pollution. The presence of NO3- in groundwater is primarily attributed to agricultural activities. The groundwater is mainly categorized as "Good" (36.6%) and "Poor" (60.8%). "Very poor" and "Excellent" categories are rare, accounting for only 1.2% and 1.4%, respectively, and no samples are classified as "Non-drinkable". The Ewi for NO3- is the highest, indicating severe contamination by anthropogenic NO3- pollution. Human health risk assessment reveals that water samples posing exposure risks account for 82.54% for children and 79.37% for adults. This study highlighted that anthropogenic nitrate pollution has deteriorated groundwater quality, posing risks to human health. It also suggests an urgent need to enhance research and protective measures for groundwater in similar regions, such as the Shandong Peninsula.
Assuntos
Água Subterrânea , Rios , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/análise , Água Subterrânea/química , Humanos , Rios/química , China , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodosRESUMO
Groundwater is widely recognized as a source of lake materials. When it discharges into lakes, phosphorus(P)iron(Fe) geochemical reactions occur due to environmental changes, affecting P discharge from groundwater. However, redox kinetics of Fe and associated P geochemical processes at the sediment-water interface are not fully understood. Taking Dongting Lake as an example, this study explored Fe and P geochemical processes at the sediment-water interface under groundwater discharge with high Fe and P concentrations. We incubated sediments from Dongting Lake under anoxic-oxic conditions with different initial aqueous P/Fe ratios and pH. Aqueous PO43--P and Fe2+, and solid P and Fe phases in sediments were analyzed, and experimental data were further simulated using numerical reactive models. At the beginning of the experiment, aqueous P and Fe were adsorbed rapidly on sediments. Under anoxic conditions, the Fe reduction rate decreased with decreasing content of poorly crystalline ferric (oxyhydr)oxides, and the addition of aqueous P and Fe at neutral pH enhanced the reduction rate. The increased aqueous P was dominated by desorption caused by sediment Fe reduction and then fixed by gibbsite adsorption and hydroxyapatite precipitation. Under oxic conditions, Fe(II) oxidation under was pH- and (P:Fe)ini-independent, with a sharp rate decline. Furthermore, the final sediment Fe(II) content was higher than the initial content, indicating the formation of a low-oxidizability Fe(II) phase. The P dynamics were dominated by adsorption on the produced Fe-oxides. The numerical models also suggested that heterogeneity in natural sediments promotes hydroxyapatite formation at low pH, but restricts it at high pH. The findings reveal that although aqueous P concentration decreased during groundwater discharge to lakes, PO43--P concentration remained much higher than that in natural lake water, increasing the risk of lake eutrophication. The paper provides references for further understanding of P loading from groundwater discharge into lakes.
RESUMO
Dissolved organic matter (DOM) plays an important role in the cycling and toxicity of heavy metals in aquatic systems. However, most studies have focused only on DOM in either water or sediments. This study aimed to analyze the source, composition, and structural characteristics of DOM in both surface water and bottom sediments of the Le'an River and its major tributaries. In addition, the potential ecological risks of three typical heavy metals (Cu, Pb, and Zn) were quantitatively evaluated based on the characteristics of DOM and in situ data. The results showed that sediment DOM is more aromatic and hydrophobic than surface water DOM. Although humic-like components dominated the DOM pool in both surface water and sediments, their sources were different. Surface water DOM is mainly autochthonous, while sediment DOM is controlled by both autochthonous and allochthonous sources. Risk prediction results based on DOM characteristics show that surface water has a higher potential risk of heavy metal release than sediments. Comprehensively considering the ecological risk of water and sediments, high-risk areas were found to be mainly distributed in the upper and middle reaches of the Le'an River. This distribution is attributable to the developed mining and smelting industries in these areas and consistent with the risk assessment results of measured concentrations of heavy metals. This study established a new technique for predicting the ecological risk of aquatic systems based on the characteristics of DOM in surface water and sediments.
Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Matéria Orgânica Dissolvida , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Rios/química , Água , Poluentes Químicos da Água/análiseRESUMO
Freshwater lakes experience drastic water level fluctuations because of climate change and human activities. However, the influence of such fluctuations on phosphorus cycling in sediments has rarely been investigated. We conducted a geochemical investigation on the phosphorus cycle in a shallow freshwater lake, Dongting Lake; under the influence of human activities and climate change, its water regime undergoes drastic changes. Irrespective of the permanent inundation zone (PIZ) or seasonal inundation zone (SIZ), the phosphorus cycle in sediments was found to be dominated by the reductive dissolution of iron (Fe) (oxyhydr)oxides, degradation of organic matters, and conversion between authigenic phosphorus (Ca-P) and detrital phosphorus in individual seasons. From winter to summer, with increasing water level, the content of Fe-bound phosphorus and organic phosphorus increase due to the deposition of suspended matter, thus increasing total phosphorus in PIZ. Moreover, the rising water level also reduces the dissolved oxygen content and promotes the reductive dissolution of Fe (oxyhydr)oxides. The mineralization of increased organic matter can release CO2 and reduce pH in the vicinity, which can further result in the acidic dissolution of detrital apatite. In turn, most of the released phosphorus can be adsorbed or co-precipitated with calcium minerals, resulting in the significant increase of Ca-P. The mechanisms of phosphorus transformation in SIZ are similar to those in PIZ, but most of the increased organic matter and total P in a core from SIZ are attributable to the decomposition of plant matter. Therefore, the water level rise not only changes the conservative speciation of phosphorus in sediments to active speciation, but also triggers the release of phosphorus adsorbed to oxides and further increases the risk of phosphorus release from sediments to overlying water. Thus, our findings have major implications for freshwater shallow lakes and their P-driven productivity.
Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Fósforo/análise , Estações do Ano , Água , Poluentes Químicos da Água/análiseRESUMO
Nitrate pollution in rivers, lakes, shallow groundwater, and even deep groundwater occurs in many parts of the world. And, it's essential to assessing the relationship between nitrate pollution and human health, which is called human health risk assessment (HHRA). In this paper, groundwater samples were collected for their nitrate content in a typical karst hydrogeological unit in East China during the wet and dry seasons. Then, a human health risk assessment was conducted using the four-step risk assessment process developed by the US Environmental Protection Agency (USEPA), which aimed to determine the potential risk posed to human health by nitrate in the groundwater. To make the assessment more authentic and objective, the drinking water and dermal contact exposure pathways were considered, and the people were divided into four groups, including infants (0~6 months), children (7 months~17 years old), females (18 years and older), and males (18 years and older), in the wet and dry seasons to determine the impacts of the exposure pathway, age, sex, and precipitation period. The results indicated that more than half of the groundwater samples exceeded 10 mg/L (measured as nitrogen), which is the drinking water standard of China. The children and infants had greater health risks than the adults at the same groundwater nitrate concentration, and those two groups need to be paid more attention; the adult females had a greater health risk than the adult males in the two precipitation periods, which shows that the order of the health risk was infants Ë children Ë adult females Ë adult males. In addition, the value of the hazard quotient (HQ) and the area of the adverse effects were both higher in the wet season than in the dry season, which explains that precipitation can affect the human health risk as well. The HQ caused by the drinking water exposure pathway was much higher than that caused by the dermal contact exposure pathway. This study can provide information for more effective and reasonable decisions to city managers for groundwater nitrate pollution prevention.
Assuntos
Água Subterrânea , Nitratos/química , Poluentes Químicos da Água , Adulto , Criança , China , Cidades , Feminino , Humanos , Lactente , Masculino , Medição de RiscoRESUMO
There is wide concern about the evolution of wetlands, an important component of the global ecosystem. The Honghe National Nature Reserve (HNNR) is an internationally important marsh wetland in China that is at risk of degradation. To gain an improved understanding of how the HNNR wetland developed from 1975 to 2014, typical years, including 1975, 1988, 1996, 2002 and 2014, were selected based on precipitation date. And land cover types of the different years were classified using TM images. The results showed that the wetland evolution mainly reflects transformations between the meadow and wetland land cover types. The landscape index suggests the wetland is degrading. The main drivers of wetland evolution were a warmer and drier climate, the establishment of an irrigation system, and a decrease in the groundwater level. These factors resulted in changes in the quantity of water in the HNNR. We can therefore say that the evolution was driven by changes in the water quantity. Because there have been very few hydrogeological studies in the HNNR, we examined the relationships among precipitation, surface water, and groundwater, all of which significantly influence water quantity. We found that precipitation was the only source of surface water and, while there was certain amount of surface water recharge into the shallow groundwater, the recharge range was limited, which increased the vulnerability of the wetlands. Thus, it is difficult to recharge surface water but easy to lose surface water from the HNNR, which suggests that efforts need to be directed at maintaining the surface water at the optimal level to prevent degradation of the wetland.