Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202416016, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320167

RESUMO

Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. It is found that compared with L8-PhF, which possesses strong intermolecular interactions but downgraded molecular packing order, L8-PhMe exhibits more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with PM6, the OSCs based on L8-PhMe shows reduced non-radiative energy loss, and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene and using 2PACz as the hole transport layer shows an outstanding PCE of 19.27%. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification.

2.
Angew Chem Int Ed Engl ; 62(26): e202303551, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099418

RESUMO

High efficiency organic solar cells (OSCs) based on A-DA'D-A type small molecule acceptors (SMAs) were mostly fabricated by toxic halogenated solvent processing, and power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is mainly restricted by the excessive aggregation of the SMAs. To address this issue, we developed two vinyl π-spacer linking-site isomerized giant molecule acceptors (GMAs) with the π-spacer linking on the inner carbon (EV-i) or out carbon (EV-o) of benzene end group of the SMA with longer alkyl side chains (ECOD) for the capability of non-halogenated solvent-processing. Interestingly, EV-i possesses a twisted molecular structure but enhanced conjugation, while EV-o shows a better planar molecular structure but weakened conjugation. The OSC with EV-i as acceptor processed by the non-halogenated solvent o-xylene (o-XY) demonstrated a higher PCE of 18.27 % than that of the devices based on the acceptor of ECOD (16.40 %) or EV-o (2.50 %). 18.27 % is one of the highest PCEs among the OSCs fabricated from non-halogenated solvents so far, benefitted from the suitable twisted structure, stronger absorbance and high charge carrier mobility of EV-i. The results indicate that the GMAs with suitable linking site would be the excellent candidates for fabricating high performance OSCs processed by non-halogenated solvents.


Assuntos
Benzeno , Carbono , Eritromicina , Cloreto de Polivinila , Solventes
3.
Opt Express ; 27(9): 12504-12516, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052789

RESUMO

There has been recent interest in diode pumped metastable rare gas lasers (DPRGLs) and their scaling to higher powers, due to the advantages of excellent beam quality and high quantum efficiency. In this paper, a cw diode pumped rare gas amplifier (DPRGA) with single-pass longitudinally pumped configuration is studied theoretically based on master oscillator and power amplifier (MOPA). A five-level kinetic model of DPRGAs is first established. Then, the influences of gain medium density, pump and seed laser intensities and gain length on DPRGA performance are simulated and analyzed. The results of numerical simulation agree well with those of Rawlins et al.'s experiment. With the best set of working parameters, the amplification factor reaches 22.18 dB, at pump intensity of 50 kW/cm2 and seed laser intensity of 100 W/cm2. Parameter optimization is helpful for design of a relatively high-power DPRGL system.

4.
Opt Express ; 27(3): 2771-2782, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732309

RESUMO

Diode pumped rare gas atoms lasers (DPRGLs) are potential candidates of the high-energy lasers, due to the advantages of high laser power and high optical conversion efficiency. In this paper, a two-stage excitation model of DPRGLs is established including gas discharge excitation and semiconductor laser pump to study energy loss mechanism and obtain total efficiency. The results of numerical simulation agree well with those of Rawlins et al.'s experiment. Through parameter optimization, the total efficiency and optical conversion efficiency reach 51.5% and 62.7% respectively, at pump intensity of 50 kW/cm2 and reduced electric field of 8 Td. Parameter optimization of two-stage excitation lasers is theoretically studied, which is significant for the DPRGLs design with high total efficiency.

5.
Adv Mater ; : e2407875, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049679

RESUMO

Unlike traditional photoluminescence (PL), mechanoluminescence (ML) achieved under mechanical excitation demonstrates unique characteristics such as high penetrability, spatial resolution, and signal-to-background ratio (SBR) for bioimaging applications. However, bioimaging with organic mechanoluminescent materials remains challenging because of the shallow penetration depth of ML with short emission wavelengths and the absence of a suitable mechanical force to generate ML in vivo. To resolve these issues, the present paper reports the achievement of ultrasound (US)-excited fluorescence and phosphorescence from purely organic luminogens for the first time with emission wavelengths extending to the red/NIR region, with the penetrability of the US-excited emission being considerably higher than that of PL. Consequently, US-excited subcutaneous phosphorescence imaging can be achieved using a mechanoluminescent-luminogen-based capsule device with a quantified intensity of 9.15 ± 1.32 × 104 p s-1 cm-2 sr-1 and an SBR of 24. Moreover, the US-excited emission can be adequately tuned using the packing modes of the conjugated skeletons, dipole orientation of mechanoluminescent luminogens, and strength and direction of intermolecular interactions. Overall, this study innovatively expands the kind of excitation sources and the emission wavelengths of organic mechanoluminescent materials, paving the way for practical biological applications based on US-excited emission.

6.
Adv Mater ; 35(48): e2302946, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515820

RESUMO

Power conversion efficiency (PCE) of organic solar cells (OSCs) processed by nonhalogenated solvents is unsatisfactory due to the unfavorable morphology. Herein, two new small molecule acceptors (SMAs) Y6-Ph and L8-Ph are synthesized by introducing a phenyl end group in the inner side chains of the SMAs of Y6 and L8-BO, respectively, for overcoming the excessive aggregation of SMAs in the long-time film forming processed by nonhalogenated solvents. First, the effect of the film forming time on the aggregation property and photovoltaic performance of Y6, L8-BO, Y6-Ph, and L8-Ph is studied by using the commonly used solvents: chloroform (CF) (rapid film forming process) and chlorobenzene (CB) (slow film forming process). It is found that Y6- and L8-BO-based OSCs exhibit a dramatic drop in PCE from CF- to CB-processed devices owing to the large phase separation, while the Y6-Ph and L8-Ph based OSCs show obviously increased PCEs Furthermore, L8-Ph-based OSCs processed by nonhalogenated solvent o-xylene (o-XY) achieved a high PCE of 18.40% with an FF of 80.11%. The results indicate that introducing a phenyl end group in the inner side chains is an effective strategy to modulate the morphology and improve the photovoltaic performance of the OSCs processed by nonhalogenated solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA