Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 174(5): e13767, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281840

RESUMO

Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.


Assuntos
Transcriptoma , Triticum , Transcriptoma/genética , Triticum/genética , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fosfatos , Fósforo/metabolismo , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(44): 11327-11332, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30275307

RESUMO

The rice endosperm, consisting of an outer single-cell layer aleurone and an inner starchy endosperm, is an important staple food for humans. While starchy endosperm stores mainly starch, the aleurone is rich in an array of proteins, vitamins, and minerals. To improve the nutritional value of rice, we screened for mutants with thickened aleurones using a half-seed assay and identified thick aleurone 2-1 (ta2-1), in which the aleurone has 4.8 ± 2.2 cell layers on average. Except for starch, the contents of all measured nutritional factors, including lipids, proteins, vitamins, minerals, and dietary fibers, were increased in ta2-1 grains. Map-based cloning showed that TA2 encodes the DNA demethylase OsROS1. A point mutation in the 14th intron of OsROS1 led to alternative splicing that generated an extra transcript, mOsROS1, with a 21-nt insertion from the intron. Genetic analyses showed that the ta2-1 phenotype is inherited with an unusual gametophytic maternal effect, which is caused not by imprinted gene expression but rather by the presence of the mOsROS1 transcript. Five additional ta2 alleles with the increased aleurone cell layer and different inheritance patterns were identified by TILLING. Genome-wide bisulfite sequencing revealed general increases in CG and CHG methylations in ta2-1 endosperms, along with hypermethylation and reduced expression in two putative aleurone differentiation-related transcription factors. This study thus suggests that OsROS1-mediated DNA demethylation restricts the number of aleurone cell layers in rice and provides a way to improve the nutrition of rice.


Assuntos
Metilação de DNA/genética , DNA/genética , Mutação/genética , Valor Nutritivo/genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Íntrons/genética , Fenótipo , Sementes/genética , Amido/genética , Fatores de Transcrição/genética
3.
Plant J ; 90(2): 383-395, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28155248

RESUMO

Endosperm cellularization is essential for embryo development and viable seed formation. Loss of function of the FERTILIZATION INDEPENDENT SEED (FIS) class Polycomb genes, which mediate trimethylation of histone H3 lysine27 (H3K27me3), as well as imbalanced contributions of parental genomes interrupt this process. The causes of the failure of cellularization are poorly understood. In this study we identified PICKLE RELATED 2 (PKR2) mutations which suppress seed abortion in fis1/mea by restoring endosperm cellularization. PKR2, a paternally expressed imprinted gene (PEG), encodes a CHD3 chromatin remodeler. PKR2 is specifically expressed in syncytial endosperm and its maternal copy is repressed by FIS1. Seed abortion in a paternal genome excess interploidy cross was also partly suppressed by pkr2. Simultaneous mutations in PKR2 and another PEG, ADMETOS (ADM), additively rescue the seed abortion in fis1 and in the interploidy cross, suggesting that PKR2 and ADM modulate endosperm cellularization independently and reproductive isolation between plants of different ploidy is established by imprinted genes. Genes upregulated in fis1 and downregulated in the presence of pkr2 are enriched in glycosyl-hydrolyzing activity, while genes downregulated in fis1 and upregulated in the presence of pkr2 are enriched with microtubule motor activity, consistent with the cellularization patterns in fis1 and the suppressor line. The antagonistic functions of FIS1 and PKR2 in modulating endosperm development are similar to those of PICKLE (PKL) and CURLY LEAF (CLF), which antagonistically regulate root meristem activity. Our results provide further insights into the function of imprinted genes in endosperm development and reproductive isolation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Sementes/genética , Fatores de Transcrição/genética
4.
J Integr Plant Biol ; 58(9): 786-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449987

RESUMO

The rice endosperm plays crucial roles in nourishing the embryo during embryogenesis and seed germination. Although previous studies have provided the general information about rice endosperm, a systematic investigation throughout the entire endosperm developmental process is still lacking. In this study, we examined in detail rice endosperm development on a daily basis throughout the 30-day period of post-fertilization development. We observed that coenocytic nuclear division occurred in the first 2 days after pollination (DAP), cellularization occurred between 3 and 5 DAP, differentiation of the aleurone and starchy endosperm occurred between 6 and 9 DAP, and accumulation of storage products occurred concurrently with the aleurone/starchy endosperm differentiation from 6 DAP onwards and was accomplished by 21 DAP. Changes in cytoplasmic membrane permeability, possibly caused by programmed cell death, were observed in the central region of the starchy endosperm at 8 DAP, and expanded to the whole starchy endosperm at 21 DAP when the aleurone is the only living component in the endosperm. Further, we observed that a distinct multi-layered dorsal aleurone formed near the dorsal vascular bundle, while the single- or occasionally two-cell layered aleurone was located in the lateral and ventral positions of endosperm. Our results provide in detail the dynamic changes in mitotic divisions, cellularization, cell differentiation, storage product accumulation, and programmed cell death that occur during rice endosperm development.


Assuntos
Endosperma/embriologia , Oryza/anatomia & histologia , Oryza/embriologia , Apoptose , Diferenciação Celular , Endosperma/citologia , Oryza/citologia , Amido/metabolismo
5.
J Integr Plant Biol ; 58(9): 772-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26472484

RESUMO

Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.


Assuntos
Oryza/anatomia & histologia , Oryza/citologia , Sementes/crescimento & desenvolvimento , Diferenciação Celular , Flores/anatomia & histologia , Flores/ultraestrutura , Modelos Biológicos , Oryza/embriologia , Oryza/ultraestrutura , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Polinização , Sementes/anatomia & histologia , Sementes/citologia
6.
Nat Plants ; 9(11): 1848-1861, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814022

RESUMO

Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.


Assuntos
Proteínas de Arabidopsis , Oryza , Complexo Repressor Polycomb 2/genética , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Endosperma/genética , Endosperma/metabolismo , Mutação , Sementes , Regulação da Expressão Gênica de Plantas
7.
Rice (N Y) ; 14(1): 102, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902082

RESUMO

Diet-related noncommunicable diseases impose a heavy burden on human health worldwide. Rice is a good target for diet-related disease prevention strategies because it is widely consumed. Liu et al. (Proc Natl Acad Sci USA 115(44):11327-11332, 2018. https://doi.org/10.1073/pnas.1806304115 ) demonstrated that increasing the number of cell layers and thickness of putative aleurone in ta2-1 (thick aleurone 2-1) mutant rice enhances simultaneously the content of multiple micronutrients. However, the increases of aleurone-associated nutrients were not proportional to the increases in the aleurone thickness. In this study, first, cytohistological analyses and transmission electron microscopy demonstrated that the multilayer in ta2-1 exhibited aleurone cell structural features. Second, we detected an increase in insoluble fibre and insoluble bound-phenolic compounds, a shift in aleurone-specific neutral non-starch polysaccharide profile, enhancement of phytate and minerals such as iron, zinc, potassium, magnesium, sulphur, and manganese, enrichment of triacylglycerol and phosphatidylcholine but slight reduction in free fatty acid, and an increase in oleic fatty acid composition. These findings support our hypothesis that the expanded aleurone-like layers in ta2-1 maintained some of the distinctive aleurone features and composition. We provide perspectives to achieve even greater filling of this expanded micronutrient sink to provide a means for multiple micronutrient enhancements in rice.

8.
Mol Plant ; 14(8): 1343-1361, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34015460

RESUMO

Cereal endosperm comprises an outer aleurone and an inner starchy endosperm. Although these two tissues have the same developmental origin, they differ in morphology, cell fate, and storage product accumulation, with the mechanism largely unknown. Here, we report the identification and characterization of rice thick aleurone 1 (ta1) mutant that shows an increased number of aleurone cell layers and increased contents of nutritional factors including proteins, lipids, vitamins, dietary fibers, and micronutrients. We identified that the TA1 gene, which is expressed in embryo, aleurone, and subaleurone in caryopses, encodes a mitochondrion-targeted protein with single-stranded DNA-binding activity named OsmtSSB1. Cytological analyses revealed that the increased aleurone cell layers in ta1 originate from a developmental switch of subaleurone toward aleurone instead of starchy endosperm in the wild type. We found that TA1/OsmtSSB1 interacts with mitochondrial DNA recombinase RECA3 and DNA helicase TWINKLE, and downregulation of RECA3 or TWINKLE also leads to ta1-like phenotypes. We further showed that mutation in TA1/OsmtSSB1 causes elevated illegitimate recombinations in the mitochondrial genome, altered mitochondrial morphology, and compromised energy supply, suggesting that the OsmtSSB1-mediated mitochondrial function plays a critical role in subaleurone cell-fate determination in rice.


Assuntos
Proteínas de Ligação a DNA/genética , Mitocôndrias/metabolismo , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Sementes/genética , Amido/genética
10.
J Plant Physiol ; 166(1): 52-62, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18448195

RESUMO

Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of alpha-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1mM putrescine to EIM together with 5mM alpha-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.


Assuntos
Citrus sinensis/embriologia , Citrus sinensis/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Glicerol/farmacologia , Poliaminas/metabolismo , Citrus sinensis/genética , Meios de Cultura , DNA Complementar/isolamento & purificação , Eflornitina/farmacologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Putrescina/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Fatores de Tempo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA