Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Small ; : e2312275, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573924

RESUMO

High internal phase emulsions (HIPEs) have been of great interest for fabricating fluorinated porous polymers having controlled pore structures and excellent physicochemical properties. However, it remains a challenge to prepare stable fluorocarbon HIPEs, due to the lack of suitable surfactants. By randomly grating hydrophilic and fluorophilic side chains to polyphosphazene (PPZ), a comb-like amphiphilic PPZ surfactant with biodegradability is designed and synthesized for stabilizing water/fluorocarbon oil-based emulsions. The hydrophilic-lipophilic balance of PPZs can be controlled by tuning the grating ratio of the two side chains, leading to the preparation of stable water-in-oil HIPEs and oil-in-water emulsions, and the production of fluorinated porous polymers and particles by polymerizing the oil phase. These fluorinated porous polymers show excellent thermal stability and, due to the hydrophobicity and porous structure, applications in the field of oil/water separation can be achieved.

2.
Soft Matter ; 19(4): 609-614, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36647672

RESUMO

Using host-guest interactions between ß-cyclodextrin-modified branched polyethyleneimine and ferrocene-terminated poly-L-lactide, the formation, assembly and jamming of polyethyleneimine surfactants (PEISs) at the liquid-liquid interface is presented. With PEIS, reconfigurable liquids with electrochemical redox responsiveness can be constructed. In conjunction with microfluidic methods, continuous, selective diffusion and purification of ionic species can be achieved in all-liquid constructs.

3.
Small ; 18(44): e2204182, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148850

RESUMO

Nanoparticle surfactants (NPSs) offer a powerful means to stabilize the oil-water interface and construct all-liquid devices with advanced functions. However, as the nanoparticle size decreases to molecular-scale, the binding energy of the NPS to the interface reduces significantly, leading to a dynamic adsorption of NPS and "liquid-like" state of the interfacial assemblies. Here, by using the host-guest recognition between a water-soluble small molecule, cucurbit[7]uril (CB[7]) and an oil-soluble polymer ligand, methyl viologen-terminated polystyrene, a supramolecular NPS model, termed CB[7] surfactant, is described. CB[7] surfactants form and assemble rapidly at the oil-water interface, generating an elastic film with excellent mechanical properties. The binding energy of CB[7] surfactant to the interface is sufficiently high to hold it in a jammed state, transforming the interfacial assemblies from a "liquid-like" to "solid-like" state, enabling the structuring of liquids. With CB[7] surfactants as the emulsifier, O/W, W/O and O/W/O emulsions can be prepared in one step. Owing to the guest-competitive responsiveness of CB[7] surfactants, the assembly/disassembly and jamming/unjamming of CB[7] surfactants can be well controlled, leading to the reconfiguration of all-liquid constructs.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Tensoativos , Tensoativos/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Água/química
4.
Angew Chem Int Ed Engl ; 61(33): e202207199, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35699457

RESUMO

The interfacial jamming of nanoparticle surfactants offers the possibility of structuring liquids and fabricating all-liquid constructs with advanced functionality. However, less attention has been given to structured liquids with multiple responsiveness. Here, we show a novel, yet highly simplified nanoparticle surfactant model, pillar[6]arene (PA[6]) surfactant, by taking advantage of the host-guest interactions between a water-soluble PA[6] and an oil-soluble ligand, ferrocenium terminated polystyrene. PA[6] surfactants form rapidly at the oil-water interface, assemble into an elastic film with excellent mechanical strength, and when jammed, offer a "solid-like" assembly to lock-in highly nonequilibrium shapes of the liquids. The interfacial assembly/jamming and disassembly/unjamming of PA[6] surfactants can be controlled by chemical redox or competitive guest reagents, endowing the structured liquids with redox or guest-competitive responsiveness.

5.
Angew Chem Int Ed Engl ; 61(25): e202203741, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384203

RESUMO

Integrating different types of supramolecular interactions opens the possibility to generate nanoparticle surfactants (NPSs) at the liquid-liquid interface that are responsive to multiple stimuli. Here we develop a covalently modified polyoxometalate/ß-cyclodextrin (POM/ß-CD) organic-inorganic hybrid, consisting of a negatively charged POM cluster with ß-CD host groups. The POM/ß-CD hybrid can be dispersed in water and interacts at a water/oil interface with ligands dissolved in an oil phase through electrostatic or host-guest interactions, thereby generating POM-surfactants (POMSs) having pH, redox, and guest-competitive responsiveness, respectively. By taking advantage of the jamming of POMSs at the interface, a reconfigurable all-liquid system could be produced that is responsive to orthogonal changes in the external environment.

6.
Chemistry ; 27(38): 9876-9884, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33878217

RESUMO

The shuttling of polysulfides is the most detrimental contribution to degrading the capacity and cycle stability of lithium-sulfur (Li-S) batteries. Adding a carbon interlayer to prevent the polysulfides from migrating is feasible, and a rational design of the structures and surface properties of the carbon layer is essential to increasing its effectiveness. Herein, we report a hierarchical porous carbon (HPC) created by carbonization of bis(phenoxy)phosphazene and in-situ doping of triple heteroatoms into the carbon lattice to fabricate an effective polysulfide-trapping interlayer. The generated carbon integrates the advantages of a hierarchical porous structure, a high specific area and rich dopants (N, O and P), to yield chemisorption and physical confinement for polysulfides and fast ion-transport synergistically. The HPC interlayer significantly improves the electrochemical performance of Li-S batteries, including an exceptional discharge capacity of 1509 mA h/g at 0.06 C and a high capacity retention of 83.7 % after 250 cycles at 0.3 C. This work thus proposes a facile in-situ synthesis of heteroatom-doped carbon with rational porous structures for suppressing the shuttle effect.

7.
ACS Appl Mater Interfaces ; 16(6): 7754-7767, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306229

RESUMO

Multiactuated shape memory materials are a class of promising intelligent materials that have received great interest in the fields of self-healing, anticounterfeiting, biomedical, soft robotic, and smart thermal management applications. To obtain a light/heat-dual-actuated shape memory material for thermal management applications in fire safety, we have designed a type of halogen-free flame-retardant phase-change composite film based on polyaryloxyphosphazene (PDAP)/phosphorene (PR) hybrid foam as a support material and paraffin wax (PW) as a phase-change material (PCM). PDAP was synthesized as a flexible foam matrix through the ring-opening polymerization of hexachlorocyclotriphosphazene, followed by a substitution reaction of aryloxy groups. The porosity of the PDAP foam is improved by introducing PR nanosheets, facilitating a high latent heat capacity of the PDAP-PR/PW composite films for thermal management applications. The PDAP-PR/PW composite films can implement rapid shape recovery within 65 s in the heating process, which is much shorter than that of the corresponding film without PR nanosheets (185 s). Furthermore, the PDAP-PR/PW composite films also exhibit light-actuated shape memory behavior thanks to their good solar-to-thermal energy absorption and conversion contributed by PR nanosheets as a highly effective photothermal material. More importantly, the presence of PR nanosheets imparts an excellent flame-retardant property to the PDAP-PR/PW composite films. The PDAP-PR/PW composite film can be self-extinguished within 2 s after the flame. Through an innovative integration of flexible polyphosphazene foam, PR nanosheets, and solid-liquid PCM to obtain a sensitive actuating response to light and heat, this study offers a new approach for developing multiactuated and eco-friendly flame-retardant shape memory materials to meet the requirement of applications with a requirement of fire safety in soft actuators, thermal therapy, control devices, and so on.

8.
Chem Asian J ; 18(23): e202300718, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846640

RESUMO

A leap-forward approach has been successfully devised to synthesize a novel hierarchical binary metal modified heteroatom doped 2D micro-/mesporous carbon-graphene nanostructure (NPSMC@Ir-Ru@rGO) for overall water splitting application. To investigate the role of decorating metals, different electrolcatalysts like NPSMC, NPSMC@rGO, NPSMC@Ir@rGO, and NPSMC@Ru@rGO were also synthesized and structural changes were compared and investigated by physiochemical techniques. All of the samples have shown electrocatalytic activities attributed to the presence of heteroatom (N, P, S) doped micro-/mesoporous carbonaceous matrix, amorphous carbon in the coexistence of graphitic lattice carbons, presence of active metal NPs (Ir and/-or Ru), an even distribution of active sites, and graphene 2D interconnected channels to promote electron transfer ability, respectively. However, the Ir-Ru metal codeped nanocatalyst (NPCMS@Ir-Ru@rGO) is proved to be an excellent electrocatalyst based on the synergistic role of Ir-Ru metals that necessitates the low overpotentials of 181 mV and 318 mV to convey a current density of 10 mA cm-2 towards the electroctalytic application of HER and OER, respectively. Furthermore, exhibiting the corresponding Tafel slopes (132 and 70 mV dec-1 ) in an alkaline medium. This work is anticipated to open up new avenues for the development of promising electrocatalysts based on active metals modified heteroatom doped carbon nanomaterials for energy applications.

9.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364567

RESUMO

In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.

10.
ACS Omega ; 7(33): 28694-28707, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033672

RESUMO

Polyphosphazenes are an inorganic molecular hybrid family with multifunctional properties due to their wide range of organic substitutes. This review intends to propose the basics of the synthetic chemistry of polyphosphazene, describing for researchers outside the field the basic knowledge required to design and prepare polyphosphazenes with desired properties. A special emphasis is placed on recent advances in chemical synthesis, which allow not only the synthesis of polyphosphazenes with controlled molecular weights and polydispersities but also the synthesis of novel branched designs and block copolymers. We also investigated the synthesis of polyphosphazenes using various functional materials. This review aims to assist researchers in synthesizing their specific polyphosphazene material with unique property combinations, with the hope of stimulating further research and even more innovative applications for these highly interesting multifaceted materials.

11.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551078

RESUMO

A novel, metal-free electrode based on heteroatom (S, N, P, O)-doped carbon nanoplates (SNPO-CPL) modifying lead pencil graphite (LPG) has been synthesized by carbonizing a unique heteroatom (S, N, P, O)-containing novel polymer, poly(cyclcotriphosphazene-co-2,5-dioxy-1,4-dithiane) (PCD), for precise screening of dopamine (DA). The designed electrode, SNPO-CPL-800, with optimized percentage of S, N, P, O doping through the sp2-carbon chain, and a large number of surface defects (thus leading to a maximum exposition number of catalytic active sites) led to fast molecular diffusion through the micro-porous structure and facilitated strong binding interaction with the targeted molecules in the interactive signaling transducer at the electrode-electrolyte interface. The designed SNPO-CPL-800 electrode exhibited a sensitive and selective response towards DA monitoring, with a limit of detection (LOD) of 0.01 nM. We also monitored DA levels in commercially available chicken samples using the SNPO-CPL-800 electrode even in the presence of interfering species, thus proving the effectiveness of the designed electrode for the precise monitoring of DA in real samples. This research shows there is a strong potential for opening new windows for ultrasensitive DA monitoring with metal-free electrodes.


Assuntos
Carbono , Grafite , Animais , Carbono/química , Dopamina/química , Galinhas , Grafite/química , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas
12.
ACS Omega ; 7(8): 7096-7102, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252700

RESUMO

We reported a study on the preparation of bimetallic Ag-Cu nanoparticles (NPs) impregnated on PZS poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via a facile and efficient reduction method. Herein, PZS nanotubes consisting of enriched hydroxyl groups are fabricated through an in situ template method, and then, fluctuating the amount ratios of Cu and Ag precursors, bimetallic NPs can be fabricated on readily prepared PZS nanotubes using NaBH4 as a reductant, which results in a series of bimetallic catalysts having tunable catalytic activity. The characterization investigations of scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy results show that Ag-Cu bimetallic NPs are well-dispersed, ultrasmall in size, and well-anchored on the surface of PZS nanotubes. In addition, to examine the catalytic activity and reusability of these nanocomposites, reduction of 4-nitrophenol to 4-aminophenol is utilized as a prototype reaction. The optimized Ag-Cu NPs with a copper ratio of 0.3% are well-stabilized by the organic-inorganic poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes. The obtained results show that bimetallic NPs have remarkably higher catalytic ability than that of their monometallic counterparts with maximum catalytic activity. These results are even better than those of noble metal-based bimetallic catalysts and pave the avenue to utilize the polyphosphazene polymer as a substrate material for highly effective bimetallic catalysts.

13.
Macromol Rapid Commun ; 32(4): 384-9, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21433188

RESUMO

A functional polyimide, hexafluoroisopropyl bis(phthalic dianhydride)/3,6-diaminocarbazole (6FDA/DAC), in which DAC serves as electron donor and 6FDA as electron acceptor, has been synthesized in our present work. Electrical characterization results on the sandwiched polyimide memory device (ITO/Thin polyimide Layer/Au) indicate that the polyimide possesses electrical bistability and the device exhibits two accessible conductivity states, which can be reversibly switched from the low-conductivity (OFF) state to the high-conductivity (ON) state with an ON/OFF current ratio of about 10(4). Different from the widely reported write-once-read-many-times (WORM) effects, the device with the 6FDA/DAC polyimide as the active layer shows dynamic random access memory (DRAM) behavior. The ON state of the device was lost immediately after removal of the applied voltage, while by applying a constant bias (e.g., 3 V) the ON state can be electrically sustained. The roles of donor and acceptor components in the polyimide main chain were elucidated through molecular simulation.


Assuntos
Condutividade Elétrica , Resinas Sintéticas/química , Transporte de Elétrons , Estrutura Molecular , Propriedades de Superfície
14.
ACS Appl Mater Interfaces ; 13(27): 32094-32105, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34219461

RESUMO

Modification by intumescent flame retardants is an effective way to impart antiflame properties to fabric materials. Polyphosphazene elastomers contain all three elements required by intumescent flame retardants: an acid source, a gas source, and a carbon source, making them all-in-one integrated intumescent flame retardants. In this work, halogen-free poly(dimethoxy)phosphazene (PDMP) loaded with 29.0 wt % phosphorus and 13.1 wt % nitrogen is shown to be an ideal flame retardant for fabric materials. For the first time, transparent and elastic PDMP was applied as an intumescent flame retardant for cotton fabric. The PDMP-coated cotton shows remarkable high-efficiency flame-retardant properties: (1) a self-extinguishing property during the vertical flame test is obtained when the add-on level reaches 5.3 wt %, with a lower smoke release character; (2) the limiting oxygen index (LOI) values of coated cotton are improved with increasing add-on level, and the thickness of the coating is measured to be at the nanolevel, 2540 nm when 10.9 wt % PDMP is coated. The coated cotton shows enhanced carbonization ability at lower temperatures, which is the key to imparting flame-retardant properties to cotton, and the PDMP-coated cotton shows remarkably lower peak heat release rate and total heat release compared to the control cotton during combustion. The durability of modified cotton was tested after 50 laundering cycles, which showed that the coating maintains 80% of its initial mass, and the after-laundering sample preserves the characteristics of self-extinguishing and a high LOI. Thus, the PDMP nanocoating-modified flame-retardant cotton fabric is sufficiently durable for practical application.

15.
ACS Appl Mater Interfaces ; 13(25): 29894-29905, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128633

RESUMO

Although high-performance graphene-based micro/nano flexible electronic devices have shown promising applications in numerous fields, there are still many problems in converting graphene into practical applications. Heteroatom-doped graphene materials are of huge importance because heteroatom doping can significantly change the electronic structure and introduce the active site, which benefits the integration with a promising substrate and achieves nondestructive transfer of carbon materials. Herein, we analyze in detail the pyrolysis gas composition of heteroatom-enriched phosphazenes with different structures and prepare a series of high-quality in situ N, P-codoped carbon-based films from phosphazene solid sources on a low-cost glass substrate by a convenient one-step method. The N, P-codoped carbon film shows reflectivity, good conductivity, and transparency. In addition, with the help of in situ "molecular welding", we achieve nondestructive transfer of a conductive carbon-based film from a glass substrate to promising layer-polyimide (PI) and prepare a flexible free-standing carbon/PI hybrid film with an excellent binding interface. The flexible conductive hybrid film shows excellent durability under an extremely low temperature environment and superior bending stability after 800 bending cycles. The results suggest that a phosphazene precursor is an amazing choice for constructing high-quality heteroatom-doped conductive carbon films. Besides, this work provides a promising way for nondestructive transfer of the conductive carbon-based films and large-scale preparation of large-area patterned conductive thin films.

16.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207940

RESUMO

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4'-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.

17.
Sci Bull (Beijing) ; 66(10): 981-990, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654255

RESUMO

Although dielectric elastomer (DE) with substantial actuated strain (AS) has been reported 20 years ago, its scientific understanding remains unclear. The most accepted theory of DE, which is proposed in 2000, holds the view that AS of DE is induced by the Maxwell stress. According to this theory, materials have similar ratios of permittivity and Young's modulus should have similar AS, while the experimental results are on contrary to this theory, and the experimental AS has no relationship with ideal AS. Here, a new dipole-conformation-actuated strain cross-scale model is proposed, which can be generally applied to explain the AS of DE without pre-strain. According to this model, several characteristics of an ideal DE are listed in this work and a new DE based on polyphosphazene (PPZ) is synthesized. The AS of PPZ can reach 84% without any pre-strain. At last, a PPZ-based all soft artificial heart (ASAH) is built, which works in the similar way with natural myocardium, indicating that this material has great application potential and possibility in the construction of an ASAH for heart failure (HF) patients.

18.
J Nanosci Nanotechnol ; 10(2): 987-93, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352746

RESUMO

Hybrid layers consisting of copper nanoparticles and polyimide have been successfully fabricated using copper nitrate as the copper precursor and pyromellitic dianhydride/oxydianiline-(PMDA/ODA-) based polyimide films as the substrate. The fabrication method relies on the potassium hydroxide-induced chemical modification of the polyimide surface to introduce carboxylic acid groups, the incorporation of copper ions through subsequent ion exchange reaction, and followed by the polyol in situ reduction of copper ions contained polyimide layers in ethylene glycol solution at 197 degrees C. The amount of copper ions in the modified layer strongly depended on the ion exchange time. The copper nanoparticles size changed from 3 nm to 27 nm when the reduction time increased from 5 min to 30 min. These experiments provided an efficient route for copper metallization of polyimide substrate. The detailed reaction progress and resulted films were characterized by Attenuated total reflection-Fourier transform infrared, X-ray photoelectron spectroscopy, inductively coupled plasma atomic emission spectrometer, X-ray diffraction, transmission and scanning electron microscope.

19.
Nanoscale ; 12(14): 7895-7901, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32227012

RESUMO

Chiral nanostructures and their optical activity have been attracting great interest. Here, we designed an enantiomer bolaamphiphile containing a naphthalene moiety (bola-1) and an alkyl spacer, and investigated its self-assembly as well as optical activity. It was found that the compound could form gels in various organic or mixed organic/water mixtures. In mixed DMSO/water, it formed a nanohelix. Due to the fluorescent nature of the naphthyl group, the nanohelix showed both CD and circularly polarized luminescence (CPL). When three achiral fluorescent molecules, pyrene-1-carboxylic acid (D2), rhodamine 110 (D3) and rhodamine B (D4), were incorporated into the helical structures formed by bola-1, the nanohelix could be retained and the CPL from the dye molecules could be induced. In addition, an energy transfer occurred between the bola-1 nanohelix and the dyes. By mixing the different emission dyes with the bola-1 in an appropriate ratio, white CPL was obtained. It was found that the dissymmetry factor of the white CPL could be increased through energy transfer. This work provided a new convenient and efficient way for obtaining white CPL.

20.
J Phys Chem B ; 113(29): 9694-701, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19555074

RESUMO

An easy technique is developed to fabricate highly conductive and reflective double-surface-silvered polyimide films at room temperature by the incorporation of silver ions in surface-modified polyimide, and subsequently by the in situ reduction of silver ions in alkaline containing aqueous glucose solution. Surface properties of the silvered composite films were investigated as a function of treatment time and reducing environment, respectively. Sheet reflectivity and conductivity can be controlled by adjusting the potassium hydroxide (KOH) etching and reducing conditions. The excellent silver-polymer adhesive property is based on a "tree roots" like micro/nanostructure of the silver layers. The essential mechanical properties of the silvered films were maintained as their inside matrix is intact during the whole procedure. Different properties between one film's double-side surfaces were investigated during the fabricating process. Films were characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), contact angle (CA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), four point probe instrument, and ultraviolet (UV) spectrophotometer.


Assuntos
Membranas Artificiais , Resinas Sintéticas/química , Prata/química , Temperatura , Condutividade Elétrica , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA