Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(23): e2207101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36892154

RESUMO

The electronic structure of mono and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry, and electrochemical gating measurements is investigated. The energetic positions of the conduction and valence band edges of the direct and indirect bandgap are reported and observe strong bandgap renormalization effects, charge screening of the exciton, as well as intrinsic n-doping of the as-synthesized material. Two distinct transitions in the spectral regime associated with the C exciton are found, which overlap into a broad signal upon filling the conduction band. In contrast to oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with a few nanometer thicknesses and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples.

2.
Angew Chem Int Ed Engl ; 60(29): 15798-15802, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33798286

RESUMO

Cycloaddition-dehydration involving a BNBN-butadiene analogue at the bay region of a dibenzoperylene and a non-enolizable aldehyde provides a novel strategy for incorporation of the oxadiazadiborinane (B2 N2 CO) ring into the scaffold of a polycyclic aromatic hydrocarbon resulting in highly emissive compounds.

3.
Angew Chem Int Ed Engl ; 57(36): 11559-11563, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29962052

RESUMO

An optical switch with two distinct resonances is formed by combining PbS nanocrystals and the conductive polymer poly[sodium 2-(2-ethynyl-4-methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals invokes charge transfer and consecutive polaron formation in the PAE, which activates the switch for excited-state absorption at visible frequencies. The optical modulation of the photocurrent response of the switch exhibits highly wavelength-selective ON/OFF ratios. Transient absorption spectroscopy shows that the polaron formation is correlated with the excited state of the nanocrystals, opening up new perspectives for photonic data processing. Such correlated activated absorption can be exploited to enhance the sensitivity for one optical signal by a second light source of different frequency as part of an optical amplifier or a device with AND logic.

4.
ACS Appl Mater Interfaces ; 13(40): 47954-47961, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605623

RESUMO

We investigate the time-resolved photocurrent response of CdSe quantum dot (QD) thin films sensitized with zinc ß-tetraaminophthalocyanine (Zn4APc) (Kumar , ACS Appl. Mater. Interfaces, 2019, 11, 48271-48280) on three different substrates, namely, silicon with 230 nm SiO2 dielectric, glass, and polyimide. While Si/SiO2 (230 nm) is not suitable for any transient photocurrent characterization due to an interfering photocurrent response of the buried silicon, we find that polyimide substrates invoke the larger optical bandwidth with 85 kHz vs 67 kHz for the same quantum dot thin film on glass. Upon evaluation of the transient photocurrent, we find that the photoresponse of the CdSe quantum dot films can be described as a combination of carrier recombination and fast trapping within 2.7 ns followed by slower multiple trapping events. The latter are less pronounced on polyimide, which leads to the higher bandwidth. We show that all devices are resistance-capacitance (RC)-time limited and that improvements of photoresistance are the key to further increasing the bandwidth.

5.
ACS Appl Mater Interfaces ; 10(29): 24708-24714, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29968457

RESUMO

PbS nanocrystals are surface-functionalized with the organic semiconductor 5,5″-dithiol-[2,2':5,2″-terthiophene] and assembled to afford hybrid nanostructured thin films with a large structural coherence and an electron mobility of 0.2 cm2/(V s). Electrochemistry, optical spectroscopy, and quantum mechanical calculations are applied to elucidate the electronic structure at the inorganic/organic interface, and it is established that electron injection into the molecule alters its (electronic) structure, which greatly facilitates coupling of the neighboring PbS 1Se states. This is verified by field-effect and electrochemically gated transport measurements, and evidence is provided that carrier transport occurs predominantly via the 1Se states. The presented material allows studying structure-transport correlations and exploring transport anisotropies in semiconductor nanocrystal superlattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA