Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 158(4): 695-708, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12186853

RESUMO

Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of embryonic architecture. Here, we show that this is due to loss of the cortical actin skeleton after depletion of plakoglobin, whereas the microtubule and cytokeratin skeletons are still present. As a functional assay for the actin skeleton, we show that wound healing, an actin-based behavior in embryos, is also abrogated by plakoglobin depletion. Both wound healing and the amount of cortical actin are enhanced by overexpression of plakoglobin. To begin to identify links between plakoglobin and the cortical actin polymerization machinery, we show here that the Rho family GTPase cdc42, is required for wound healing in the Xenopus blastula. Myc-tagged cdc42 colocalizes with actin in purse-strings surrounding wounds. Overexpression of cdc42 dramatically enhances wound healing, whereas depletion of maternal cdc42 mRNA blocks it. In combinatorial experiments we show that cdc42 cannot rescue the effects of plakoglobin depletion, showing that plakoglobin is required for cdc42-mediated cortical actin assembly during wound healing. However, plakoglobin does rescue the effect of cdc42 depletion, suggesting that cdc42 somehow mediates the distribution or function of plakoglobin. Depletion of alpha-catenin does not remove the cortical actin skeleton, showing that plakoglobin does not mediate its effect by its known linkage through alpha-catenin to the actin skeleton. We conclude that in Xenopus, the actin skeleton is a major determinant of cell shape and overall architecture in the early embryo, and that plakoglobin plays an essential role in the assembly, maintenance, or organization of this cortical actin.


Assuntos
Actinas/fisiologia , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Proteínas de Drosophila , Cicatrização/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/fisiologia , Tamanho Celular/fisiologia , Desmoplaquinas , Xenopus laevis , alfa Catenina , gama Catenina
2.
PLoS One ; 9(6): e98444, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892825

RESUMO

Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.


Assuntos
Proteínas Hedgehog/metabolismo , Disco Intervertebral/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteínas Hedgehog/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/genética
3.
Development ; 134(4): 779-88, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17229765

RESUMO

The segregation of the vertebrate embryo into three primary germ layers is one of the earliest developmental decisions. In Xenopus, where the process is best understood, the endoderm is specified by a vegetally localized transcription factor, VegT, which releases nodal signals that specify the adjacent marginal zone of the blastula to become mesoderm. However, little is known about how the ectoderm becomes specified. In this paper, we show that the forkhead protein FoxI1e (also known as Xema) is required at the blastula stage for normal formation of both the central nervous system and epidermis, the two early derivatives of the ectoderm. In addition, FoxI1e is required to maintain the regional identity of the animal cells of the blastula, the cells that are precursors of ectodermal structures. In its absence, they lose contact with the animal cap, mix with cells of other germ layers and differentiate according to their new positions. Because FoxI1e is initially expressed in the animal region of the embryo and is rapidly downregulated in the neural plate, its role in neural and epidermal gene expression must precede the division of the ectoderm into neural and epidermal. The work also shows that FoxI1e plays a role in the embryo in the poorly understood process of differential adhesion, which limits cell mixing as primary germ layers become specified.


Assuntos
Blástula/citologia , Ectoderma/citologia , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Adesão Celular , Diferenciação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Indução Embrionária , Células Epidérmicas , Epiderme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Xenopus , Proteínas de Xenopus/genética
4.
Development ; 132(3): 591-602, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15634697

RESUMO

XPACE4 is a member of the subtilisin/kexin family of pro-protein convertases. It cleaves many pro-proteins to release their active proteins, including members of the TGFbeta family of signaling molecules. Studies in mouse suggest it may have important roles in regulating embryonic tissue specification. Here, we examine the role of XPACE4 in Xenopus development and make three novel observations: first, XPACE4 is stored as maternal mRNA localized to the mitochondrial cloud and vegetal hemisphere of the oocyte; second, it is required for the endogenous mesoderm inducing activity of vegetal cells before gastrulation; and third, it has substrate-specific activity, cleaving Xnr1, Xnr2, Xnr3 and Vg1, but not Xnr5, Derriere or ActivinB pro-proteins. We conclude that maternal XPACE4 plays an important role in embryonic patterning by regulating the production of a subset of active mature TGFbeta proteins in specific sites.


Assuntos
Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/metabolismo , Dados de Sequência Molecular , Mães , Oligonucleotídeos Antissenso/genética , Comunicação Parácrina , Fenótipo , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Serina Endopeptidases/química , Serina Endopeptidases/genética , Proteínas de Xenopus
5.
Cell ; 120(6): 857-71, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15797385

RESUMO

Wnt signaling pathways play essential roles in patterning and proliferation of embryonic and adult tissues. In many organisms, this signaling pathway directs axis formation. Although the importance of intracellular components of the pathway, including beta-catenin and Tcf3, has been established, the mechanism of their activation is uncertain. In Xenopus, the initiating signal that localizes beta-catenin to dorsal nuclei has been suggested to be intracellular and Wnt independent. Here, we provide three lines of evidence that the pathway specifying the dorsal axis is activated extracellularly in Xenopus embryos. First, we identify Wnt11 as the initiating signal. Second, we show that activation requires the glycosyl transferase X.EXT1. Third, we find that the EGF-CFC protein, FRL1, is also essential and interacts with Wnt11 to activate canonical Wnt signaling.


Assuntos
Padronização Corporal/fisiologia , Proteínas do Citoesqueleto/metabolismo , Glicoproteínas/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Xenopus/metabolismo , Animais , Padronização Corporal/genética , Proteínas do Citoesqueleto/genética , Primers do DNA/genética , Embrião não Mamífero/metabolismo , Feminino , Proteínas Ligadas por GPI , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Transdução de Sinais/genética , Transativadores/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt , Xenopus/embriologia , Proteínas de Xenopus/metabolismo , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA