RESUMO
Cyanobacteria are attractive hosts for photosynthetic terpenoid production, using CO2 as the sole carbon source. Although the methylerythritol phosphate (MEP) pathway is superior to the mevalonate pathway for cyanobacterial terpenoid synthesis, the first reaction of the MEP pathway, which is catalyzed by 1-deoxy-d-xylulose-5-phosphate (DXP) synthase, involves complex regulation and carbon loss. Here, we constructed a direct route linking ribulose-5-phosphate (Ru5P) in the Calvin-Benson (CB) cycle with DXP in the MEP pathway in a cyanobacterium to increase the terpenoid yield from CO2 and bypass the DXS-targeted regulations. By employing the adaptive laboratory evolution, we identified new RibB variants including RibB 90-92del with a high activity of synthesizing DXP from Ru5P. These RibB variants were introduced into Synechococcus elongatus, resulting in the significantly increased photosynthetic production of isopentenol. The 13C tracer experiments demonstrated a direct carbon flow from Ru5P in the CB cycle to the MEP pathway; thus, this direct route was denoted as the Ru5P shunt. The strain harboring the Ru5P shunt produced 105.2 mg L-1 of isopentenol with an average rate of 17.5 mg L-1 d-1 under continuous light conditions, which is higher than those ever reported for five-carbon alcohol production by photoautotrophic microorganisms. Utilization of the Ru5P shunt in cyanobacterial cells also improved the pinene production, which demonstrates that this shunt can be used to enhance the photosynthetic production of diverse terpenoids.
Assuntos
Pentanóis , Pentoses , Fosfatos , Terpenos , Terpenos/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , CarbonoRESUMO
Spermidine, a ubiquitous polyamine, is known to be required for critical physiological functions in bacteria. Two principal pathways are known for spermidine biosynthesis, both of which involve aminopropylation of putrescine. Here, we identified a spermidine biosynthetic pathway via a previously unknown metabolite, carboxyaminopropylagmatine (CAPA), in a model cyanobacterium Synechocystis sp. PCC 6803 through an approach combining 13C and 15N tracers, metabolomics, and genetic and biochemical characterization. The CAPA pathway starts with reductive condensation of agmatine and l-aspartate-ß-semialdehyde into CAPA by a previously unknown CAPA dehydrogenase, followed by decarboxylation of CAPA to form aminopropylagmatine, and ends with conversion of aminopropylagmatine to spermidine by an aminopropylagmatine ureohydrolase. Thus, the pathway does not involve putrescine and depends on l-aspartate-ß-semialdehyde as the aminopropyl group donor. Genomic, biochemical, and metagenomic analyses showed that the CAPA-pathway genes are widespread in 15 different phyla of bacteria distributed in marine, freshwater, and other ecosystems.