Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Regen Res ; 14(5): 858-867, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688272

RESUMO

Moyamoya disease and cerebrovascular atherosclerotic disease are both chronic ischemic diseases with similar presentations of vascular cognitive impairment. The aim of the present study was to investigate the patterns of microstructural damage associated with vascular cognitive impairment in the two diseases. The study recruited 34 patients with moyamoya disease (age 43.9 ± 9.2 years; 20 men and 14 women, 27 patients with cerebrovascular atherosclerotic disease (age: 44.6 ± 7.6 years; 17 men and 10 women), and 31 normal controls (age 43.6 ± 7.3 years; 18 men and 13 women) from Huashan Hospital of Fudan University in China. Cognitive function was assessed using the Mini-Mental State Examination, long-term delayed recall of Auditory Verbal Learning Test, Trail Making Test Part B, and the Symbol Digit Modalities Test. Single-photon emission-computed tomography was used to examine cerebral perfusion. Voxel-based morphometry and tract-based spatial statistics were performed to identify regions of gray matter atrophy and white matter deterioration in patients and normal controls. The results demonstrated that the severity of cognitive impairment was similar between the two diseases in all tested domains. Patients with moyamoya disease and those with cerebrovascular atherosclerotic disease suffered from disturbed supratentorial hemodynamics. Gray matter atrophy in bilateral middle cingulate cortex and parts of the frontal gyrus was prominent in both diseases, but in general, was more severe and more diffuse in those with moyamoya disease. White matter deterioration was significant for both diseases in the genu and body of corpus callosum, in the anterior and superior corona radiation, and in the posterior thalamic radiation, but in moyamoya disease, it was more diffuse and more severe. Vascular cognitive impairment was associated with regional microstructural damage, with a potential link between, gray and white matter damage. Overall, these results provide insight into the pathophysiological nature of vascular cognitive impairment. This study was approved by the Institutional Review Board in Huashan Hospital, China (approval No. 2014-278). This study was registered with ClinicalTrials.gov on December 2, 2014 with the identifier NCT02305407.

2.
J Neurol Sci ; 394: 19-25, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196131

RESUMO

Botulinum neurotoxin A (BTX-A) intervention has long-term benefits for children with obstetric brachial plexus palsy (OBPP). Although cortical plasticity has been widely studied, plasticity in white matter has not received as much attention. Here, six children with OBPP underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) before and 6 months after BTX-A treatment. Surface electromyography (EMG) was recorded. The aim was to investigate changes in the corticospinal tract (CST) as an example longitudinal observation of white matter plasticity. Deterministic fiber tracking with a Fiber Assignment by Continuous Tracking algorithm was used to reconstruct the CST. Fiber tracts passing through a region of interest (ROI) in the posterior limb of the internal capsule and a target ROI in the upper-limb representation of M1 (defined by task-related fMRI) were selected as the CST. Motor performances were improved while EMG showed no significant difference 6 months after the treatment. We observed a significant increase in mean fractional anisotropy and a significant decrease in fiber number after treatment. We analyzed the correlations between DTI metrics and clinical motor assessments. Although the correlation results were not statistically significant, they support the notion that BTX-A treatment causes white matter plasticity and has a positive long-term outcome. Peripheral deafferentation may lead to altered information flow, resulting in the positive adaptation of white matter. This study provides novel insight into cerebral plasticity following peripheral nerve regeneration and indicates that a combination of relatively non-invasive therapies can accelerate plasticity of sensorimotor circuits and promote functional recovery in OBPP.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Plexo Braquial , Fármacos Neuromusculares/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Paralisia/tratamento farmacológico , Tratos Piramidais/diagnóstico por imagem , Animais , Anisotropia , Plexo Braquial/diagnóstico por imagem , Plexo Braquial/efeitos dos fármacos , Plexo Braquial/patologia , Mapeamento Encefálico , Criança , Pré-Escolar , Imagem de Tensor de Difusão , Eletromiografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Paralisia/diagnóstico por imagem , Tratos Piramidais/efeitos dos fármacos , Estudos Retrospectivos , Estatísticas não Paramétricas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA