Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202319896, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38197522

RESUMO

Upgrading of polyethylene terephthalate (PET) waste into valuable oxygenated molecules is a fascinating process, yet it remains challenging. Herein, we developed a two-step strategy involving methanolysis of PET to dimethyl terephthalate (DMT), followed by hydrogenation of DMT to produce the high-valued chemical methyl p-methyl benzoate (MMB) using a fixed-bed reactor and a Cu/ZrO2 catalyst. Interestingly, we discovered the phase structure of ZrO2 significantly regulates the selectivity of products. Cu supported on monoclinic ZrO2 (5 %Cu/m-ZrO2 ) exhibits an exceptional selectivity of 86 % for conversion of DMT to MMB, while Cu supported on tetragonal ZrO2 (5 %Cu/t-ZrO2 ) predominantly produces p-xylene (PX) with selectivity of 75 %. The superior selectivity of MMB over Cu/m-ZrO2 can be attributed to the weaker acid sites present on m-ZrO2 compared to t-ZrO2 . This weak acidity of m-ZrO2 leads to a moderate adsorption capability of MMB, and facilitating its desorption. Furthermore, DFT calculations reveal Cu/m-ZrO2 catalyst shows a higher effective energy barrier for cleavage of second C-O bond compared to Cu/t-ZrO2 catalyst; this distinction ensures the high selectivity of MMB. This catalyst not only presents an approach for upgrading of PET waste into fine chemicals but also offers a strategy for controlling the primary product in a multistep hydrogenation reaction.

2.
Angew Chem Int Ed Engl ; 62(42): e202311335, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37646093

RESUMO

Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4 , but selective and efficient synthesis of higher alcohols (C2+ OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+ OH from CO2 hydrogenation over K-modified Ni-Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni-Zn carbide (K-Ni3 Zn1 C0.7 ) by carburization of Zn-incorporated Ni0 , which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C-C coupling to C2+ OH rather than conventional CH4 . This work opens a new catalytic avenue toward CO2 hydrogenation to C2+ OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.

3.
J Phys Chem A ; 120(51): 10281-10288, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-27966938

RESUMO

A series of MkF2k-1+ (M = Mg, Ca; k = 2, 3) cations have been theoretically investigated to make a new attempt to design superalkali species. As expected, most of these cations were identified as pseudoalkali or even superalkali cations in view of their low electron affinities (EAs). The stability of these cationic clusters is indicated by considerable HOMO-LUMO gaps and positive dissociation energies. More intriguingly, these alkaline-earth-metal-based cations have advantages over alkali-metal-based superalkalis in two aspects: (1) they possess much larger binding energy values; (2) they can keep the chemical stability along with the increasing cluster size. Therefore, it is proposed here that the alkaline-earth-metal atoms could partner with halogens to construct stable cations of low EA value, which may add new candidates to the superalkali family.

4.
Phys Chem Chem Phys ; 17(15): 9698-705, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25772725

RESUMO

Hydrogenation of unsaturated organosulfur compounds is an essential process through which these species are converted into cleaner and more useful compounds. Hydrogen bronze materials have been demonstrated to be efficient catalysts in hydrogenation of simple unsaturated compounds. Herein, we performed density functional theory calculations to investigate hydrogenation of thiophene on hydrogen tungsten bronze. Various reaction pathways were investigated and the most favourable routes were identified. Our results suggest that the reaction proceeds with moderate barriers, and formation of tetrahydrothiophene is facile both thermochemically and kinetically. The present study provides a useful insight into the design of hydrogenation thiophene and its derivatives and effective hydrodesulfurization catalysts.

5.
Chem Asian J ; 19(6): e202301103, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38288641

RESUMO

The development of effective and stable non-precious catalysts for hydrogenation of ester to diols remains a challenge. Herein, the catalytic hydrogenation of ethyl lactate (EL) to 1,2-propanediol (1,2-PDO) with supported Co catalysts derived from layered double hydroxides (LDHs) is investigated. Catalytic tests reveal that LDH-derived Co catalysts exhibit the best catalytic performance with 98 % of EL conversion and >99 % of 1,2-PDO selectivity at mild conditions, compared with other Co catalysts (supported on Al2O3, and TiO2) and LDH-derived Cu catalysts. Due to the strong interaction among Co and Al matrix, the main composition is metallic Co0 and CoO after reduction at 600 °C. Besides, the catalyst shows good recyclability in the liquid phase hydrogenation. The superior catalytic performance can be attributed to the synergistic effect between Co0 and CoO, in which H2 molecule is activated on Co0 and EL is strongly adsorbed on CoO via hydroxyl groups.

6.
ACS Appl Mater Interfaces ; 9(38): 33071-33079, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28876885

RESUMO

Developing rewritable papers has gathered immense interest in recent times in view of developing sustainability in print media without exhausting environmental resources. We herein present a rapid and facile procedure for the fabrication of a communication medium by treating the surface of a paper with synthetic organic molecules, after which plain water could be used as an ink to print and reprint numerous times on the treated paper before disposal. Interestingly, as the paper comes in contact with water, the molecules are driven to reorganize in a slip-stacked arrangement. This alters their ground and excited state properties by hydrogen-bond-assisted nonradiative decay, in which the associated changes are visible to the naked eye. The changes evolved are sensitive to the solubility parameter of the solvent and thermally reversible, thus linking the hydrochromic property to the paper. Against a background of concerns over a rise in counterfeiting and leaks of confidential information, prospects for encrypted communications and anticounterfeiting is herein demonstrated.

7.
Sci Rep ; 5: 12058, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26156332

RESUMO

Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA