RESUMO
Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g-1 ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li1.2 Mn0.54 Co0.13-x Ybx Ni0.13 O2 where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.
RESUMO
Developing a highly active, durable, and low-platinum-based electrocatalyst for the cathodic oxygen reduction reaction (ORR) is for breaking the bottleneck of large-scale applications of proton exchange membrane fuel cells (PEMFCs). Herein, ultrafine PtZn intermetallic nanoparticles with low Pt-loading and trace germanium (Ge) involvement confined in the nitrogen-doped porous carbon (Ge-L10-PtZn@N-C) are reported. The Ge-L10-PtZn@N-C exhibit superior ORR activity with a mass activity of 3.04 A mg-1 Pt and specific activity of 4.69 mA cm-2, ≈12.2- and 10.2-times improvement compared to the commercial Pt/C (20%) at 0.90 V in 0.1 m KOH. The cathodic catalyst Ge-L10-PtZn@N-C assembled in the PEMFC shows encouraging peak power densities of 316.5 (at 0.86 V) and 417.2 mW cm-2 (at 0.91 V) in alkaline and acidic fuel-cell, respectively. The combination of experiment and density functional theory calculations (DFT) results robustly reveal that the participation of trace Ge can not only trigger a "growth site locking effect" to effectively inhibit nanoparticle growth, bring miniature nanoparticles, enhance dispersion uniformity, and achieve the exposure of the more electrochemical active site, but also effectively modulates the electronic structure, hence optimizing the adsorption/desorption of the oxygen intermediates.
RESUMO
Phase engineering of Pt-based intermetallic catalysts has been demonstrated as a promising strategy to optimize catalytic properties for a direct formic acid fuel cell. Pt-Bi intermetallic catalysts are attracting increasing interest due to their high catalytic activity, especially for inhibiting CO poisoning. However, the phase transformation and synthesis of intermetallic compounds usually occurring at high temperatures leads to a lack of control of the size and composition. Here, we report the synthesis of intermetallic ß-PtBi2 and γ-PtBi2 two-dimensional nanoplates with controlled sizes and compositions under mild conditions. The different phases of intermetallic PtBi2 can significantly affect the catalytic performance of the formic acid oxidation reaction (FAOR). The obtained ß-PtBi2 nanoplates exhibit an excellent mass activity of 1.1 ± 0.01 A mgPt-1 for the FAOR, which is 30-fold higher than that of commercial Pt/C catalysts. Moreover, intermetallic PtBi2 demonstrates high tolerance to CO poisoning, as confirmed by in situ infrared absorption spectroscopy.
RESUMO
Topological defects are inevitable existence in carbon-based frameworks, but their intrinsic electrocatalytic activity and mechanism remain under-explored. Herein, the hydrogen evolution reaction (HER) of pentagonal carbon-rings is probed by constructing pentagonal ring-rich carbon (PRC), with optimized electronic structures and higher HER activity relative to common hexagonal carbon (HC). Furthermore, to improve the reactivity, we couple Ru clusters with PRC (Ru@PRC) through p-d orbital hybridization between C and Ru atoms, which drives a shortcut transfer of electrons from Ru clusters to pentagonal rings. The electron-deficient Ru species leads to a notable negative shift in d-band centers of Ru and weakens their binding strength with hydrogen intermediates, thus enhancing the HER activity in different pH media. Especially, at a current density of 10â mA cm-2, PRC greatly reduces alkaline HER overpotentials from 540 to 380â mV. And Ru@PRC even exhibits low overpotentials of 28 and 275â mV to reach current densities of 10 and 1000â mA cm-2, respectively. Impressively, the mass activity and price activity of Ru@PRC are 7.83 and 15.7â times higher than that of Pt/C at the overpotential of 50â mV. Our data unveil the positive HER reactivity of pentagonal defects and good application prospects.
RESUMO
Overall photocatalytic conversion of CO2 and pure H2 O driven by solar irradiation into methanol provides a sustainable approach for extraterrestrial synthesis. However, few photocatalysts exhibit efficient production of CH3 OH. Here, BiOBr nanosheets supporting atomic Cu catalysts for CO2 reduction are reported. The investigation of charge dynamics demonstrates a strong built-in electric field established by isolated Cu sites as electron traps to facilitate charge transfer and stabilize charge carriers. As result, the catalysts exhibit a substantially high catalytic performance with methanol productivity of 627.66 µmol gcatal -1 h-1 and selectivity of ≈90% with an apparent quantum efficiency of 12.23%. Mechanism studies reveal that the high selectivity of methanol can be ascribed to energy-favorable hydrogenation of *CO intermediate giving rise to *CHO. The unfavorable adsorption on Cu1 @BiOBr prevents methanol from being oxidized by photogenerated holes. This work highlights the great potential of single-atom photocatalysts in chemical transformation and energy storage reactions.
RESUMO
The design of highly active and durable catalysts for the sluggish anodic oxygen evolution reaction (OER) in acid remains an urgent yet challenging goal in water electrolysis. Herein, a core-shell nanostructured Ru@Ir-O catalyst with tensile strains and incorporated oxygens is introduced in the Ir shell that holds an extremely low OER overpotential of 238 mV at 10 mA cm-2 in acid. The material also shows a remarkable 78-fold higher mass activity than the conventional IrO2 at 1.55 V in 0.5 M H2 SO4 . Structural characterization and theoretical calculations reveal that the core-shell interaction and tensile strain cause band position shift and charge redistribution. These electronic factors furthermore optimize the bonding strength of O* and HOO* intermediates on the surface, yielding significantly boosted OER activity relative to the conventional IrO2 .
RESUMO
Fast-charging, non-aqueous lithium-based batteries are desired for practical applications. In this regard, LiMn2O4 is considered an appealing positive electrode active material because of its favourable ionic diffusivity due to the presence of three-dimensional Li-ion diffusion channels. However, LiMn2O4 exhibits inadequate rate capabilities and rapid structural degradation at high currents. To circumvent these issues, here we introduce quintuple low-valence cations to increase the entropy of LiMn2O4. As a result, the entropy-increased LiMn2O4-based material, i.e., LiMn1.9Cu0.02Mg0.02Fe0.02Zn0.02Ni0.02O4, when tested in non-aqueous lithium metal coin cell configuration, enable 1000 cell cycles at 1.48 A g-1 (corresponding to a cell charging time of 4 minutes) and 25°C with a discharge capacity retention of about 80%. We demonstrate that the increased entropy in LiMn2O4 leads to an increase in the disordering of dopant cations and a contracted local structure, where the enlarged LiO4 space and enhanced Mn-O covalency improve the Li-ion transport and stabilize the diffusion channels. We also prove that stress caused by cycling at a high cell state of charge is relieved through elastic deformation via a solid-solution transition, thus avoiding structural degradation upon prolonged cycling.
RESUMO
Uneven distribution of electric fields at the electrolyte-anode interface and associated Zn dendrite growth is one of the most critical barriers that limit the life span of aqueous zinc-ion batteries. Herein, new-type Zn-A-O (A = Si, Ti) interface layers with thin and uniform thickness, porosity, and hydrophilicity properties are developed to realize homogeneous and smooth Zn plating. For ZnSiO3 nanosheet arrays on Zn foil (Zn@ZSO), their formation follows an "etching-nucleation-growth" mechanism that is confirmed by a well-designed Zn-island-based identical-location microscopy method, the geometric area of which is up to 1000 cm2 in one-pot synthesis based on a low-temperature wet-chemical method. Guided by the structural advantages of the ZSO layer, the Zn2+ flux gets equalized. Besides ultralow polarization, the life spans of symmetric cells and full cells coupled with a high-mass-loading K0.27 MnO2 ·0.54H2 O (8 mg cm-2 ) cathode, are increased by 3-7 times with the Zn@ZSO anode. Moreover, the large-scale preparation of Zn@ZSO foil contributes to a 0.5 Ah multilayer pouch cell with high performance, further confirming its prospects for practical application.
RESUMO
The electronic metal-support interaction (EMSI) plays a crucial role in catalysis as it can induce electron transfer between metal and support, modulate the electronic state of the supported metal, and optimize the reduction of intermediate species. In this work, the tailoring of electronic structure of Pt single atoms supported on N-doped mesoporous hollow carbon spheres (Pt1 /NMHCS) via strong EMSI engineering is reported. The Pt1 /NMHCS composite is much more active and stable than the nanoparticle (PtNP ) counterpart and commercial 20 wt% Pt/C for catalyzing the electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 40 mV at a current density of 10 mA cm-2 , a high mass activity of 2.07 A mg-1 Pt at 50 mV overpotential, a large turnover frequency of 20.18 s-1 at 300 mV overpotential, and outstanding durability in acidic electrolyte. Detailed spectroscopic characterizations and theoretical simulations reveal that the strong EMSI effect in a unique N1 -Pt1 -C2 coordination structure significantly tailors the electronic structure of Pt 5d states, resulting in promoted reduction of adsorbed proton, facilitated H-H coupling, and thus Pt-like HER activity. This work provides a constructive route for precisely designing single-Pt-atom-based robust electrocatalysts with high HER activity and durability.
RESUMO
Manganese oxides are attracting great interest owing to their rich polymorphism and multiple valent states, which give rise to a wide range of applications in catalysis, capacitors, ion batteries, and so forth. Most of their functionalities are connected to transitions among the various polymorphisms and Mn valences. However, their atomic-scale dynamics is still a great challenge. Herein, we discovered a strong heterogeneity in the crystalline structure and defects, as well as in the Mn valence state. The transitions are studied by in situ transmission electron microscopy (TEM), and they involve a complex ordering of [MnO6] octahedra as the basic building tunnels. MnO2 nanowires synthesized using solution-based hydrothermal methods usually exhibit a large number of multiple polymorphism impurities with different tunnel sizes. Upon heating, MnO2 nanowires undergo a series of stoichiometric polymorphism changes, followed by oxygen release toward an oxygen-deficient spinel and rock-salt phase. The impurity polymorphism exhibits an abnormally high stability with interesting small-large-small tunnel size transition, which is attributed to a preferential stabilizer (K+) concentration, as well as a strong competition of kinetics and thermodynamics. Our results unveil the complicated intergrowth of polymorphism impurities in MnO2, which provide insights into the heterogeneous kinetics, thermodynamics, and transport properties of the tunnel-based building blocks.
RESUMO
Bi2Te3-based materials are dominating thermoelectrics for almost all of the room-temperature applications. To meet the future demands, both their thermoelectric (TE) and mechanical properties need to be further improved, which are the requisite for efficient TE modules applied in areas such as reliable micro-cooling. The conventional zone melting (ZM) and powder metallurgy (PM) methods fall short in preparing Bi2Te3-based alloys, which have both a highly textured structure for high TE properties and a fine-grained microstructure for high mechanical properties. Herein, a mechanical exfoliation combined with spark plasma sintering (ME-SPS) method is developed to prepare Bi0.5Sb1.5Te3 with highly improved mechanical properties (correlated mainly to the dislocation networks), as well as significantly improved thermoelectric properties (correlated mainly to the texture structure). In the method, both the dislocation density and the orientation factor (F) can be tuned by the sintering pressure. At a sintering pressure of 20 MPa, an exceptional F of up to 0.8 is retained, leading to an excellent power factor of 4.8 mW m-1 K-2 that is much higher than that of the PM polycrystalline. Meanwhile, the method can readily induce high-density dislocations (up to â¼1010 cm-2), improving the mechanical properties and reducing the lattice thermal conductivity as compared to the ZM ingot. In the exfoliated and then sintered (20 MPa) sample, the figure-of-merit ZT = 1.2 (at 350 K), which has increased by about â¼20%, and the compressive strength has also increased by â¼20%, compared to those of the ZM ingot, respectively. These results demonstrate that the ME-SPS method is highly effective in preparing high-performance Bi2Te3-based alloys, which are critical for TE modules in commercial applications at near-room temperature.
RESUMO
Collagen fibrils present periodic structures, which provide space for intrafibrillar growth of oriented hydroxyapatite nanocrystals in bone and contribute to the good mechanical properties of bone. However, there are not many reports focused on bioprocess-inspired synthesis of non-native inorganic materials inside collagen fibrils and detailed forming processes of crystals inside collagen fibrils remain poorly understood. Herein, the rapid intrafibrillar mineralization of calcium fluoride nanocrystals with a periodically patterned nanostructure is demonstrated. The negatively charged calcium fluoride precursor phase infiltrates collagen fibrils through the gap zones creating an intricate periodic mineralization pattern. Later, the nanocrystals initially filling the gap zones only expand gradually into the remaining space within the collagen fibrils. Mineralized tendons with organized calcium fluoride nanocrystals acquire mechanical properties (indentation elastic modulus â¼25.1 GPa and hardness â¼1.5 GPa) comparable or even superior to those of native human dentin and lamellar bone. Understanding the mineral growth processes in collagen may facilitate the development of tissue engineering and repairing.
Assuntos
Fluoreto de Cálcio , Nanopartículas , Osso e Ossos , Colágeno , Humanos , Engenharia TecidualRESUMO
Li-Se battery is a promising energy storage candidate owing to its high theoretical volumetric capacity and safe operating condition. In this work, for the first time, we report using the whole organic Melamine-based porous polymer networks (MPNs) as a precursor to synthesize a N, O, S co-doped hierarchically porous carbon nanobelts (HPCNBs) for both Li-ion and Li-Se battery. The N, O, S co-doping resulting in the defect-rich HPCNBs provides fast transport channels for electrolyte, electrons and ions, but also effectively relieve volume change. When used for Li-ion battery, it exhibits an advanced lithium storage performance with a capacity of 345 mAh g-1 at 500 mA g-1 after 150 cycles and a superior rate capacity of 281 mAh g-1 even at 2000 mA g-1. Further density function theory calculations reveal that the carbon atoms adjacent to the doping sites are electron-rich and more effective to anchor active species in Li-Se battery. With the hierarchically porous channels and the strong dual physical-chemical confinement for Li2Se, the Se@ HPCNBs composite delivers an ultra-stable cycle performance even at 2 C after 1000 cycles. Our work here suggests that introduce of heteroatoms and defects in graphite-like anodes is an effective way to improve the electrochemical performance.
RESUMO
Evaluating the alkaline water electrolysis (AWE) at 50-80 °C required in industry can veritably promote practical applications. Here, the thermally induced complete reconstruction (TICR) of molybdate oxygen evolution reaction (OER) pre-catalysts at 51.9 °C and its fundamental mechanism are uncovered. The dynamic reconstruction processes, the real active species, and stereoscopic structural characteristics are identified by in situ low-/high-temperature Raman, ex situ microscopy, and electron tomography. The completely reconstructed (CR) catalyst (denoted as cat.-51.9) is interconnected by thermodynamically stable (oxy)hydroxide nanoparticles, with abundant boundaries and low crystallinity. For alkaline OER, cat.-51.9 exhibits a low overpotential (282.3 mV at 20 mA cm-2 , 25.0 °C) and ultrastable catalysis at 51.9 °C (250 h, with a negligible activity decay of 19.6 µV h-1 ). The experimental observations combined with theoretical analyses confirm the fast catalytic kinetics enabled by the co-effect of boundaries and vacancies. The coupled cat.-51.9 and MoO2 -Ni hydrogen-evolving arrays provide stable electrolysis operation at 51.9 °C for 220 h. This work uncovers new reconstruction phenomenon of pre-catalysts under realistic conditions and exceptional durability of CR catalysts toward practical high-temperature AWE.
RESUMO
The release of the lattice oxygen due to the thermal degradation of layered lithium transition metal oxides is one of the major safety concerns in Li-ion batteries. The oxygen release is generally attributed to the phase transitions from the layered structure to spinel and rocksalt structures that contain less lattice oxygen. Here, a different degradation pathway in LiCoO2 is found, through oxygen vacancy facilitated cation migration and reduction. This process leaves undercoordinated oxygen that gives rise to oxygen release while the structure integrity of the defect-free region is mostly preserved. This oxygen release mechanism can be called surface degradation due to the kinetic control of the cation migration but has a slow surface to bulk propagation with continuous loss of the surface cation ions. It is also strongly correlated with the high-voltage cycling defects that end up with a significant local oxygen release at low temperatures. This work unveils the thermal vulnerability of high-voltage Li-ion batteries and the critical role of the surface fraction as a general mitigating approach.
RESUMO
MXenes are a group of two-dimensional transition metal carbides/nitrides that have been widely used for many useful applications such as energy storage, catalysis and sensors. For large scale applications of MXenes, the ambient stability is a critical issue. However, the detailed degradation mechanism of MXenes remains largely unclear. Here, the oxidation mechanism of MXene flakes under ambient conditions has been studied using aberration corrected scanning transmission electron microscopy (STEM). The heterogeneous growth of titanium oxide has been observed in the vicinity of atomic defects on the MXene basal plane as well as on the edges of MXene flakes. C atoms are oxidized at Ti-vacancies to form amorphous carbon aggregations, while Ti cations are oxidized at the nearby sites with atomic steps/edges. The diffusion of both electrons and Ti cations is involved and the Ti-ion diffusion is prompted by an internal electric field intrinsically built up during oxidation. The anatase TiO2 nanoparticles preferentially grow along the {101} lattice plane. A loose orientation relationship between the anatase TiO2 and MXene was identified, showing that mostly the {101} plane of TiO2 nanocrystals is perpendicular to the Ti3C2-MXene {0001} basal plane. This work reveals at atomic resolution the oxidation mechanism of MXenes under ambient conditions and will shed light on the design and synthesis of more stable MXenes. It may also provide insights to develop a one-step method to synthesize hybrid structures of carbon supported TiO2 nanoparticles for future large scale applications.