Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(6)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736234

RESUMO

Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.

2.
Nanoscale ; 9(10): 3424-3428, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28094385

RESUMO

Although photodetectors based on two dimensional (2D) materials have been intensively studied, there are few reports of optical fiber compatible devices. Herein we successfully fabricated an all-in fiber photodetector (FPD) based on an end-face bonded with few-layer molybdenum disulfide (MoS2). Our FPD has a considerably high photo-responsivity of ∼0.6 A W-1 at a bias voltage of 4 V and 0.01 A W-1 under the bias-free conditions. We believe that the proposed platform may provide a new strategy for the integration of 2D materials in fibers and realization of optoelectronic and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA