Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Chem ; 96(12): 4933-4941, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483253

RESUMO

Nephritis is an inflammatory condition of the glomerulus, and the clinical gold standard for its diagnosis is a kidney biopsy. However, obtaining biopsy results can take several days, which does not meet the requirement of rapid diagnosis, especially for rapidly progressive types. To achieve an effective and noninvasive diagnosis, we propose a nephritis-specific, positive magnetic resonance imaging (MRI) contrast agent based on Gd3+ anchored walking dead macrophage Gd-RAW. Gd-RAW exhibits high selectivity for inflammatory renal parenchyma and provides comparable results to histopathology methods. The Gd-RAW-based MRI contrast agent reduces the diagnostic time of nephritis from 14 days of biopsy to 1 h. Furthermore, in a unilateral nephritis model constructed by increasing the glycerol concentration, the T1WI of renal parenchyma exhibits an increased signal-to-noise ratio, which is crucial for evaluating nephritic severity. This work promotes rapid diagnosis of nephritis and potentially provides sufficient evidence for clinicians to offer timely treatment to patients. The methodology of paramagnetic ion-anchored macrophage corpse also opens up new prospects for designing more specific and biosafe MRI contrast agents.


Assuntos
Meios de Contraste , Nefrite , Humanos , Rim/diagnóstico por imagem , Nefrite/diagnóstico por imagem , Glomérulos Renais , Imageamento por Ressonância Magnética/métodos
2.
Nanotechnology ; 35(41)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38991510

RESUMO

Colorectal cancer (CRC) is a prevalent malignancy with high mortality rates and poor prognosis. Shikonin (SHK) has demonstrated extensive anti-tumor activity across various cancers, yet its clinical application is hindered by poor solubility, limited bioavailability, and high toxicity. This study aims to develop SHK-loaded exosomes (SHK-Exos) and assess their efficacy in CRC progression. Exosomes were isolated using ultracentrifugation and characterized via TEM, NTA, and western blotting. Their cellular internalization was confirmed through confocal microscopy post PKH67 labeling. Effects on cell behaviors were assessed using CCK-8 and Transwell assays. Cell cycle and apoptosis were analyzed via flow cytometry. A xenograft tumor model evaluatedin vivotherapeutic potential, and tumor tissues were examined using H&E staining andin vivoimaging. SHK-Exos demonstrated effective cell targeting and internalization in CRC cells.In vitro, SHK-Exos surpassed free SHK in inhibiting aggressive cellular behaviors and promoting apoptosis, whilein vivostudies showed substantial efficacy in reducing tumor growth with excellent tumor targeting and minimal toxicity. Employing SHK-Exos effectively impedes CRC progressionin vitroandin vivo, offering significant therapeutic potential. This research underscores the advantages of using autologous exosomes as a drug carrier, enhancing efficacy and reducing toxicity.


Assuntos
Apoptose , Neoplasias Colorretais , Exossomos , Naftoquinonas , Naftoquinonas/farmacologia , Naftoquinonas/química , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Animais , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Progressão da Doença , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
3.
Nanotechnology ; 33(27)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344944

RESUMO

Hydroxyapatite nanoparticles (HAP) have been widely used in various fields because of their natural biological origin and functional properties. The emerging evidence on their toxicities has attracted research interest. HAP-induced vascular smooth muscle cell (VSMC) damage is a key step in vascular calcification (VC), particularly in patients with chronic kidney disease. However, the injury effects and mechanism of action of HAP on VSMCs have not been extensively investigated. This study comprehensively characterized commercially available HAP and investigated its adverse biological effects in cultured A7R5 cells.In vitroexperiments revealed that internalized HAP was localized in lysosomes, followed by the release of Ca2+owing to the low pH microenvironment. Upon Ca2+homeostasis, Ca2+enters the mitochondria, leading to the simultaneous generation of reactive oxygen species (ROS). ROS subsequently attack mitochondrial transmembrane potentials, promote mitochondrial ROS production, and oxidize mitochondrial DNA (Ox-mtDNA). Mitochondrial permeability-transition pores open, followed by the release of more Ox-mtDNA from the mitochondria into the cytosol due to the redox imbalance. This activates NLRP3/caspase-1/gasdermin D-dependent pyroptosis and finally excretes inflammatory factors to induce VC; an antioxidant could rescue this process. It has been suggested that HAP could induce an imbalance in intracellular Ca2+homeostasis in A7R5 cells, followed by the promotion of mitochondrial dysfunction and cell pyroptosis, finally enhancing VC. To detect thein vivotoxicity of HAP, mice were treated with Cy7-labelled HAP NPs for 24 h.In vivoresults also demonstrated that HAP accumulated in the kidneys, accompined with increased Ca concentration, upregulated oxidative stress-related factor and kidney damage. Overall, our research elucidates the mechanism of calcium homeostasis and redox imbalance, providing insights into the prevention of HAP-induced cell death.


Assuntos
Nanopartículas , Calcificação Vascular , Animais , Cálcio , DNA Mitocondrial/efeitos adversos , DNA Mitocondrial/metabolismo , Durapatita/química , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , Nanopartículas/toxicidade , Oxirredução , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismo
4.
Blood Purif ; 51(3): 270-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34753147

RESUMO

BACKGROUND: Heart failure (HF) is one of the main comorbidities in patients receiving maintenance hemodialysis (HD). Sacubitril/valsartan (SAC/VAL) is widely used in HF patients with reduced ejection fraction (HFrEF) or HF mid-range ejection fraction (HFmrEF). However, the pharmacokinetic (PK) and pharmacodynamic properties of SAC/VAL in HD patients with HF remain uncertain. OBJECTIVES: This study aimed to analyze the efficacy and PK properties of SAC/VAL in HD patients with HFrEF or HFmrEF. METHODS: HD patients with HFrEF or HFmrEF were treated with SAC/VAL 50 or 100 mg twice a day (BID) and the concentrations of valsartan and LBQ657 (active metabolite of SAC) were determined by high-performance liquid chromatography-tandem mass spectrometry during HD and on the days between HD sessions (interval days). N-terminal-pro B-type natriuretic peptide and high-sensitivity troponin T were measured, and left ventricular ejection fraction (LVEF) was evaluated by echocardiography. RESULTS: The mean maximum plasma concentrations (Cmax) of LBQ657 and VAL on the interval days were 15.46 ± 6.01 and 2.57 ± 1.23 mg/L, respectively. Compared with previous values in patients with severe renal impairment and healthy volunteers, these levels both remained within the safe concentration ranges during treatment with SAC/VAL 100 mg BID. Moreover, SAC/VAL significantly improved LVEF in HD patients with HFrEF or HFmrEF (p < 0.05). CONCLUSIONS: HD did not remove the SAC metabolite LBQ657 or VAL in patients with HF. However, SAC/VAL 100 mg BID was safe and effective in patients undergoing HD.


Assuntos
Insuficiência Cardíaca , Aminobutiratos , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Diálise Renal , Volume Sistólico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Valsartana/uso terapêutico , Função Ventricular Esquerda
5.
ACS Appl Mater Interfaces ; 16(11): 13481-13495, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456402

RESUMO

Ferroptosis, as a type of regulated cell death, can trigger the release of damage-associated molecular patterns from cancer cells and lead to the enhancement of immune recognition. Fenton reaction-mediated chemodynamic therapy could initiate ferroptosis by generating lipid peroxides, but its efficiency would be greatly restricted by the insufficient H2O2 and antioxidant system within the tumor. Herein, this work reports the successful preparation of H2O2 self-supplied and glutathione (GSH)-depletion therapeutic nanocomposites (Cu2O@Au) through in situ growth of Au nanoparticles on the surface of cuprous oxide (Cu2O) nanospheres. Upon delivery into cancer cells, the released Cu2O could consume endogenous H2S within colorectal cancer cells to form Cu31S16 nanoparticles, while the released Au NPs could catalyze glucose to generate H2O2 and gluconic acid. The self-supplying endogenous H2O2 and lower acidity could amplify the Cu ion-induced Fenton-like reaction. Meanwhile, the consumption of glucose would reduce GSH generation by disrupting the pentose phosphate pathway. Additionally, the Cu2+/Cu+ catalytic cycle promotes the depletion of GSH, leading to lipid peroxide accumulation and ferroptosis. It was found that the onset of ferroptosis triggered by Cu2O@Au could initiate immunologic cell death, promote dendritic cell maturation and T-cell infiltration, and finally enhance the antitumor efficacy of the PD-L1 antibody. In summary, this collaborative action produces a remarkable antitumor effect, which provides a promising treatment strategy for colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/farmacologia , Peróxido de Hidrogênio , Nanopartículas Metálicas/uso terapêutico , Imunidade , Glucose , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Glutationa , Microambiente Tumoral
6.
iScience ; 27(4): 109504, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632989

RESUMO

Kidney transplantation is essential for patients with end-stage renal disease; however, ischemia-reperfusion injury (IRI) during transplantation can lead to acute kidney damage and compromise survival. Recent studies have reported that antiferroptotic agents may be a potential therapeutic strategy, by reducing production of reactive oxygen species (ROS). Therefore, we constructed rutin-loaded polydopamine nanoparticles (PEG-PDA@rutin NPs, referred to as PPR NPs) to eliminate ROS resulting from IRI. Physicochemical characterization showed that the PPR NPs were ∼100 nm spherical particles with good ROS scavenging ability. Notably, PPR NPs could effectively enter lipopolysaccharide (LPS)-treated renal tubular cells, then polydopamine (PDA) released rutin to eliminate ROS, repair mitochondria, and suppress ferroptosis. Furthermore, in vivo imaging revealed that PPR NPs efficiently accumulated in the kidneys after IRI and effectively protected against IRI damage. In conclusion, PPR NPs demonstrated an excellent ability to eliminate ROS, suppress ferroptosis, and protect kidneys from IRI.

7.
ESC Heart Fail ; 10(2): 1077-1089, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36578105

RESUMO

AIM: The progression of atherosclerosis can lead to the occurrence of multiple cardiovascular diseases (coronary heart disease, etc.). E prostanoid receptor-3 (EP3) is known to participate in the progression of atherosclerosis. This study aimed to investigate the mechanism by which EP3 modulates the development of atherosclerosis. METHODS AND RESULTS: ApoE-/- mice were used to construct in vivo model of atherosclerosis. Human aortic smooth muscle cells (HASMCs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to construct in vitro model of atherosclerosis. mRNA expressions were assessed by qRT-PCR, and western blot was applied to assess the protein levels. CCK-8 assay was applied to assess the cell viability. The inflammatory cytokines levels were assessed by enzyme-linked immunosorbent assay, and flow cytometry was applied to assess cell apoptosis. In vivo experiment was constructed to investigate the impact of EP3 in atherosclerosis development. L-798106 (EP3 inhibitor) significantly inhibited the levels of pro-inflammatory cytokines in atherosclerosis in vivo. EP3 inhibitor (L-798106) significantly reversed ox-LDL-caused HASMCs injury via inhibiting the apoptosis and inflammatory responses (P < 0.05). The levels of interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) in HASMCs were elevated by ox-LDL, whereas L-798106 or knockdown of cyclic AMP (cAMP) response element-binding protein (CREB) notably restored this phenomenon (P < 0.05). EP3 overexpression further aggravated ox-LDL-induced inflammation in HASMCs, and EP3 up-regulated the levels of IL-17 and ICAM-1 in ox-LDL-treated HASMCs (P < 0.05). EP3 up-regulation promoted the inflammatory responses in ox-LDL-treated HASMCs through mediation of cAMP/protein kinase A (PKA)/CREB/IL-17/ICAM-1 axis (P < 0.05). CONCLUSIONS: EP3 inhibitor alleviates ox-LDL-induced HASMC inflammation via mediation of cAMP/PKA/CREB/IL-17/ICAM-1 axis. Our study might shed new lights on discovering novel strategies against atherosclerosis.


Assuntos
Aterosclerose , Molécula 1 de Adesão Intercelular , Animais , Humanos , Camundongos , Aterosclerose/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-17/metabolismo , Lipoproteínas LDL/metabolismo , Miócitos de Músculo Liso/metabolismo , Prostaglandinas/metabolismo
8.
Eur J Pharmacol ; 944: 175596, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804542

RESUMO

BACKGROUND: Secondary hyperparathyroidism (SHPT) is a common complication of end-stage renal disease. Parathyroidectomy (PTx) is often employed for treatment of severe SHPT. However, PTx may cause hypotension via unknown mechanisms. COMM domain-containing protein 5 (COMMD5) in the parathyroid glands has been linked to blood pressure regulation of spontaneously hypertensive rats. OBJECTIVE: To explore the relationship between COMMD5 levels and reduced BP after PTx in patients receiving hemodialysis (HD). METHODS AND RESULTS: (1) The study cohort included 31 patients receiving HD who underwent PTx. Serum COMMD5 levels were higher post-PTx vs. pre-PTx. (2) Sprague-Dawley rats (n = 22) were assigned to a 5/6 nephrectomy group or sham surgery group, vascular rings of the thoracic aorta from rats with CKD were incubated with COMMD5, and changes in vascular tension were compared. COMMD5 inhibited vasoconstriction of vascular rings with intact endothelium, but had no effect on vascular rings without the endothelium. (3) Human umbilical vein endothelial cells were stimulated with COMMD5 or small interfering RNA (siRNA). The expression levels of atrial natriuretic peptide (ANP) and endothelial nitric oxide synthase (eNOS) were up-regulated and down-regulated, respectively. CONCLUSIONS: Serum COMMD5 levels were increased after PTx in SHPT patients. COMMD5 promoted high expression of ANP and eNOS in endothelial cells, leading to vasodilation and resulting in hypotension.


Assuntos
Hiperparatireoidismo Secundário , Hipotensão , Falência Renal Crônica , Anel Vascular , Humanos , Ratos , Animais , Paratireoidectomia/métodos , Células Endoteliais , Anel Vascular/complicações , Anel Vascular/cirurgia , Ratos Sprague-Dawley , Diálise Renal , Falência Renal Crônica/terapia , Hipotensão/complicações , Ratos Endogâmicos SHR , Hormônio Paratireóideo , Proteínas Nucleares , Proteínas Adaptadoras de Transdução de Sinal
9.
Biochem Biophys Rep ; 28: 101145, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746448

RESUMO

Podocyte injury is sufficient to cause glomerulosclerosis and proteinuria, eventually leading to kidney failure. Previous studies found that podocytes and neurons had similar biological characteristics. Growth-associated protein-43 (GAP-43) is a growth cone protein in neurons, and a marker of axonal and synaptic growth. However, it is not known whether GAP-43 is expressed in podocytes. Compared with normal glomerular podocytes, GAP-43 was significantly reduced in patients with glomerular diseases. GAP-43 also significantly reduced in lipopolysaccharide (LPS)-treated podocytes. We found that the decreased expression of nephrin, the cell marker of the podocyte, was significantly recovered with GAP-43 overexpression. In contrast, the migration ability in LPS-treated podocyte was reduction after GAP-43 overexpressing. Moreover, overexpression of GAP-43 attenuated podocyte apoptosis by up-regulating the ratio of Bcl-2/Bax with LPS treatment. Finally, Plaue and Rcan1 which are downstream target gene of NFATc1 decreased with overexpression of GAP-43 podocytes. We concluded that GAP-43 attenuated podocyte injury by inhibiting calcineurin/NFATc1 signaling. The findings may provide a promising treatment for podocyte injury-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA