Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557103

RESUMO

Annual wild soybean (G. soja) is the ancestor of the cultivated soybean (G. max). To reveal the genetic changes from soja to max, an improved wild soybean chromosome segment substitution line (CSSL) population, SojaCSSLP5, composed of 177 CSSLs with 182 SSR markers (SSR-map), was developed based on SojaCSSLP1 generated from NN1138-2(max)×N24852(soja). The SojaCSSLP5 was genotyped further through whole-genome resequencing, resulting in a physical map with 1366 SNPLDBs (SNP linkage-disequilibrium blocks), which are composed of more markers/segments, shorter marker length and more recombination breakpoints than the SSR-map and caused 721 new wild substituted segments. Using the SNPLDB-map, two loci co-segregating with seed-coat color (SCC) and six loci for days to flowering (DTF) with 88.02% phenotypic contribution were identified. Integrated with parental RNA-seq and DNA-resequencing, two SCC and six DTF candidate genes, including three previously cloned (G, E2 and GmPRR3B) and five newly detected ones, were predicted and verified at nucleotide mutant level, and then demonstrated with the consistency between gene-alleles and their phenotypes in SojaCSSLP5. In total, six of the eight genes were identified with the parental allele-pairs coincided to those in 303 germplasm accessions, then were further demonstrated by the consistency between gene-alleles and germplasm phenotypes. Accordingly, the CSSL population integrated with parental DNA and RNA sequencing data was demonstrated to be an efficient platform in identifying candidate wild vs. cultivated gene-alleles.


Assuntos
Alelos , Flores/genética , Genes de Plantas , Glycine max/genética , Característica Quantitativa Herdável , Sementes , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética , Loci Gênicos , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
2.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728264

RESUMO

Lactobacillus bacteria are potential delivery vehicles for biopharmaceutical molecules because they are well-recognized as safe microorganisms that naturally inhabit the human body. The goal of this study was to employ these lactobacilli to combat human immunodeficiency virus type 1 (HIV-1) infection and transmission. By using a chromosomal integration method, we engineered Lactobacillus acidophilus ATCC 4356 to display human CD4, the HIV-1 receptor, on the cell surface. Since human CD4 can bind to any infectious HIV-1 particles, the engineered lactobacilli can potentially capture HIV-1 of different subtypes and prevent infection. Our data demonstrate that the CD4-carrying bacteria are able to adsorb HIV-1 particles and reduce infection significantly in vitro and also block intrarectal HIV-1 infection in a humanized mouse model in preliminary tests in vivo Our results support the potential of this approach to decrease the efficiency of HIV-1 sexual transmission.IMPORTANCE In the absence of an effective vaccine, alternative approaches to block HIV-1 infection and transmission with commensal bacteria expressing antiviral proteins are being considered. This report provides a proof-of-concept by using Lactobacillus bacteria stably expressing the HIV-1 receptor CD4 to capture and neutralize HIV-1 in vitro and in a humanized mouse model. The stable expression of antiviral proteins, such as CD4, following genomic integration of the corresponding genes into this Lactobacillus strain may contribute to the prevention of HIV-1 sexual transmission.


Assuntos
Antígenos CD4/metabolismo , Infecções por HIV/prevenção & controle , HIV-1/metabolismo , Lactobacillus acidophilus/metabolismo , Animais , Antígenos CD4/genética , Linhagem Celular , Feminino , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , Humanos , Lactobacillus acidophilus/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651369

RESUMO

HIV-1 enters cells through binding between viral envelope glycoprotein (Env) and cellular receptors to initiate virus and cell fusion. HIV-1 Env precursor (gp160) is cleaved into two units noncovalently bound to form a trimer on virions, including a surface unit (gp120) and a transmembrane unit (gp41) responsible for virus binding and membrane fusion, respectively. The polar region (PR) at the N terminus of gp41 comprises 17 residues, including 7 polar amino acids. Previous studies suggested that the PR contributes to HIV-1 membrane fusion and infectivity; however, the precise role of the PR in Env-mediated viral entry and the underlying mechanisms remain unknown. Here, we show that the PR is critical for HIV-1 fusion and infectivity by stabilizing Env trimers. Through analyzing the PR sequences of 57,645 HIV-1 isolates, we performed targeted mutagenesis and functional studies of three highly conserved polar residues in the PR (S532P, T534A, and T536A) which have not been characterized previously. We found that single or combined mutations of these three residues abolished or significantly decreased HIV-1 infectivity without affecting viral production. These PR mutations abolished or significantly reduced HIV-1 fusion with target cells and also Env-mediated cell-cell fusion. Three PR mutations containing S532P substantially reduced gp120 and gp41 association, Env trimer stability, and increased gp120 shedding. Furthermore, S532A mutation significantly reduced HIV-1 infectivity and fusogenicity but not Env expression and cleavage. Our findings suggest that the PR of gp41, particularly the key residue S532, is structurally essential for maintaining HIV-1 Env trimer, viral fusogenicity, and infectivity.IMPORTANCE Although extensive studies of the transmembrane unit (gp41) of HIV-1 Env have led to a fusion inhibitor clinically used to block viral entry, the functions of different domains of gp41 in HIV-1 fusion and infectivity are not fully elucidated. The polar region (PR) of gp41 has been proposed to participate in HIV-1 membrane fusion in biochemical analyses, but its role in viral entry and infectivity remain unclear. In our effort to characterize three nucleotide mutations of an HIV-1 RNA element that partially overlaps the PR coding sequence, we identified a novel function of the PR that determines viral fusion and infectivity. We further demonstrated the structural and functional impact of six PR mutations on HIV-1 Env stability, viral fusion, and infectivity. Our findings reveal the previously unappreciated function of the PR and the underlying mechanisms, highlighting the important role of the PR in regulating HIV-1 fusion and infectivity.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Vírion/metabolismo , Vírion/fisiologia , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
J Am Chem Soc ; 141(8): 3613-3622, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30689374

RESUMO

The aim of this study is to illuminate a novel therapeutic approach by identifying a functional binding target of salinomycin, an emerging anticancer stem cell (CSC) agent, and to help dissect the underlying action mechanisms. By utilizing integrated strategies, we identify that nucleolin (NCL) is likely a salinomycin-binding target and a critical regulator involved in human neuroblastoma (NB) CSC activity. Salinomycin markedly suppresses NB CD34 expression and reduces CD34+ cell population in an NCL-dependent manner via disruption of the interaction of NCL with CD34 promoter. The elevated levels of NCL expression in NB tumors are associated with poor patient survival. Altogether, these results indicate that NCL is likely a novel functional salinomycin-binding target that exhibits the potential to be a prognostic marker for NB therapy.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Fosfoproteínas/metabolismo , Piranos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Antígenos CD34/biossíntese , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fosfoproteínas/química , Piranos/química , Proteínas de Ligação a RNA/química , Células Tumorais Cultivadas , Nucleolina
5.
Theor Appl Genet ; 132(10): 2793-2807, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31280342

RESUMO

KEY MESSAGE: A wild soybean allele conferring 100-seed weight, protein content and oil content simultaneously was fine-mapped to a 329-kb region on Chromosome 15, in which Glyma.15g049200 was predicted a candidate gene. Annual wild soybean characterized with small 100-seed weight (100SW), high protein content (PRC), low oil content (OIC) may contain favourable alleles for broadening the genetic base of cultivated soybeans. To evaluate these alleles, a population composed of 195 chromosome segment substitution lines (SojaCSSLP4), with wild N24852 as donor and cultivated NN1138-2 as recurrent parent, was tested. In SojaCSSLP4, 10, 9 and 8 wild segments/QTL were detected for 100SW, PRC and OIC, respectively. Using a backcross-derived secondary population, one segment for the three traits (q100SW15, qPro15 and qOil15) and one for 100SW (q100SW18.2) were fine-mapped into a 329-kb region on chromosome 15 and a 286-kb region on chromosome 18, respectively. Integrated with the transcription data in SoyBase, 42 genes were predicted in the 329-kb region where Glyma.15g049200 showed significant expression differences at all seed development stages. Furthermore, the Glyma.15g049200 segments of the two parents were sequenced and compared, which showed two base insertions in CDS (coding sequence) in the wild N24852 comparing to the NN1138-2. Since only Glyma.15g049200 performed differential CDS between the two parents but related to the three traits, Glyma.15g049200 was predicted a pleiotropic candidate gene for 100SW, PRC and OIC. The functional annotation of Glyma.15g049200 indicated a bidirectional sucrose transporter belonging to MtN3/saliva family which might be the reason that this gene provides a same biochemical basis for 100SW, PRC and OIC, therefore, is responsible for the three traits. This result may facilitate isolation of the specific gene and provide prerequisite for understanding the other two pleiotropic QTL.


Assuntos
Cromossomos de Plantas/genética , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/anatomia & histologia , Sementes/metabolismo , Óleo de Soja/metabolismo , Alelos , Mapeamento Cromossômico , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
6.
J Biol Chem ; 292(14): 5860-5870, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196864

RESUMO

The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP1 and the fusion-mediating GP2 subunits and incorporated into virions to initiate infection. GP1 and GP2 form heterodimers that have 15 or two N-glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N-glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP1 NGSs are not critical, the two GP2 NGSs, Asn563 and Asn618, are essential for GP function. Further analysis uncovered that Asn563 and Asn618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn563 and Asn618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality.


Assuntos
Ebolavirus/metabolismo , Regulação Viral da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ebolavirus/genética , Glicosilação , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Células Vero , Proteínas do Envelope Viral/genética
7.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931684

RESUMO

Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks. In the present study, we investigated the roles of this sequence motif and glycosylation of the E protein in the pathogenicity of ZIKV. We first constructed a stable full-length cDNA clone of ZIKV in a novel linear vector from which infectious virus was recovered. The recombinant ZIKV generated from the infectious clone, which contains the VNDT motif, is highly pathogenic and causes lethality in a mouse model. In contrast, recombinant viruses from which the VNDT motif is deleted or in which the N-linked glycosylation site is mutated by single-amino-acid substitution are highly attenuated and nonlethal. The mutant viruses replicate poorly in the brains of infected mice when inoculated subcutaneously but replicate well following intracranial inoculation. Our findings provide the first evidence that N-linked glycosylation of the E protein is an important determinant of ZIKV virulence and neuroinvasion.IMPORTANCE The recent emergence of Zika virus (ZIKV) in the Americas has caused major worldwide public health concern. The virus appears to have gained significant pathogenicity, causing serious human diseases, including microcephaly and Guillain-Barré syndrome. The factors responsible for the emergence of pathogenic ZIKV are not understood at this time, although genetic changes have been shown to facilitate virus transmission. All isolates from the recent outbreaks contain an N-linked glycosylation site within the viral envelope (E) protein, whereas many isolates of the African lineage virus lack this site. To elucidate the functional significance of glycosylation in ZIKV pathogenicity, recombinant ZIKVs from infectious clones with or without the glycan on the E protein were generated. ZIKVs lacking the glycan were highly attenuated for the ability to cause mortality in a mouse model and were severely compromised for neuroinvasion. Our studies suggest glycosylation of the E protein is an important factor contributing to ZIKV pathogenicity.


Assuntos
Encéfalo/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Motivos de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Evolução Molecular , Glicosilação , Humanos , Camundongos , Mosquitos Vetores , Mutação , Filogenia , Células Vero , Fatores de Virulência/química , Fatores de Virulência/genética , Zika virus/genética , Zika virus/metabolismo
8.
J Neurovirol ; 24(1): 62-74, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29181724

RESUMO

Persistence of HIV-1 reservoirs in the central nervous system (CNS) is an obstacle to cure strategies. However, little is known about residual viral distribution, viral replication levels, and genetic diversity in different brain regions of HIV-infected individuals on combination antiretroviral therapy (cART). Because myeloid cells particularly microglia are likely major reservoirs in the brain, and more microglia exist in white matter than gray matter in a human brain, we hypothesized the major viral reservoirs in the brain are the white matter reflected by higher levels of viral DNA. To address the issue, we used the Chinese rhesus macaque (ChRM) model of SIV infection, and treated 11 SIVmac251-infected animals including long-term nonprogressors with cART for up to 24 weeks. SIV reservoirs were assessed by SIV DNA levels in 16 specific regions of the brain and 4 regions of spinal cord. We found relatively high frequencies of SIV in basal ganglia and brain stem compared to other regions. cART-receiving animals had significantly lower SIV DNA levels in the gray matter than white matter. Moreover, a shortened envelope gp120 with 21 nucleotide deletions and guanine-to-adenine hypermutations were observed. These results demonstrate that SIV enters the CNS in SIV-infected ChRM with a major reservoir in the white matter after cART; the SIV/ChRM/cART is an appropriate model for studying HIV CNS reservoirs and testing new eradication strategies. Further, examining multiple regions of the CNS may be needed when assessing whether an agent is successful in reducing the size of SIV reservoirs in the CNS.


Assuntos
Terapia Antirretroviral de Alta Atividade , Gânglios da Base/virologia , Tronco Encefálico/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Substância Branca/virologia , Adenina/metabolismo , Sequência de Aminoácidos , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/patologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , DNA Viral/genética , DNA Viral/metabolismo , Feminino , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/patologia , Substância Cinzenta/virologia , Guanina/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Macaca mulatta , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/virologia , Mutação , Filogenia , Alinhamento de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/patogenicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/virologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
9.
Mol Cell ; 37(5): 656-67, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227370

RESUMO

The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (layers 1 and 2) in the gp120 inner domain. Both layers apparently contribute to the noncovalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, layer 1-layer 2 interactions strengthen gp120-CD4 binding by reducing the off rate. Layer 1-layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner-domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Internalização do Vírus , Animais , Antígenos CD4/genética , Cães , Genótipo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Ligantes , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores CCR5/metabolismo , Relação Estrutura-Atividade , Transfecção
10.
J Virol ; 90(22): 10065-10073, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27535053

RESUMO

Binding of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) gp120 exterior envelope glycoprotein to CD4 triggers conformational changes in gp120 that promote its interaction with one of the chemokine receptors, usually CCR5, ultimately leading to gp41-mediated virus-cell membrane fusion and entry. We previously described that topological layers (layer 1, layer 2, and layer 3) in the gp120 inner domain contribute to gp120-trimer association in the unliganded state but also help secure CD4 binding. Relative to layer 1 of HIV-1 gp120, the SIVmac239 gp120 layer 1 plays a more prominent role in maintaining gp120-trimer association but is minimally involved in promoting CD4 binding, which could be explained by the existence of a well-conserved tryptophan at position 375 (Trp 375) in HIV-2/SIVsmm. In this study, we investigated the role of SIV layer 3 in viral entry, cell-to-cell fusion, and CD4 binding. We observed that a network of interactions involving some residues of the ß8-α5 region in SIVmac239 layer 3 may contribute to CD4 binding by helping shape the nearby Phe 43 cavity, which directly contacts CD4. In summary, our results suggest that layer 3 in SIV has a greater impact on CD4 binding than in HIV-1. This work defines lineage-specific differences in layer 3 from HIV-1 and that from SIV. IMPORTANCE: CD4-induced conformational changes in the gp120 inner domain involve rearrangements between three topological layers. While the role of layers 1 to 3 for HIV-1 and layers 1 and 2 for SIV on gp120 transition to the CD4-bound conformation has been reported, the role of SIV layer 3 remains unknown. Here we report that SIV layer 3 has a greater impact on CD4 binding than does layer 3 in HIV-1 gp120. This work defines lineage-specific differences in layer 3 from HIV-1 and SIV.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Proteínas do Envelope Viral/metabolismo , Antígenos CD4/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-2/metabolismo , Células HeLa , Humanos , Ligação Proteica/fisiologia , Conformação Proteica , Receptores CCR5/metabolismo , Internalização do Vírus
11.
J Virol ; 90(19): 8395-409, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27384653

RESUMO

Previous studies have shown that highly conserved residues in the inner domain of gp120 are required for HIV-1 envelope glycoprotein (Env) transitions to the CD4-bound conformation (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012; A. Desormeaux, M. Coutu, H. Medjahed, B. Pacheco, A. Herschhorn, et al., J Virol 87:2549-2562, 2013, http://dx.doi.org/10.1128/JVI.03104-12). Moreover, W69, a highly conserved residue located at the interface between layer 1 and layer 2 of the inner domain, was recently shown to be important for efficient Env recognition by CD4-induced (CD4i) antibodies capable of potent antibody-dependent cellular cytotoxicity (W. D. Tolbert, N. Gohain, M. Veillette, J. P. Chapleau, C. Orlandi, et al., 2016, Structure 24:697-709, http://dx.doi.org/10.1016/j.str.2016.03.005; S. Ding, M. Veillette, M. Coutu, J. Prevost, L. Scharf, et al., 2016, J Virol 90:2127-2134, http://dx.doi.org/10.1128/JVI.02779-15). We evaluated the contribution of the hydrophobicity of W69 to conformational changes of Env by replacing it with a series of residues with aliphatic or aromatic side chains of decreasing chain length. We have found that the hydrophobicity of residue 69 is important for Env processing, CD4 binding, and its transition to the CD4-bound conformation. The most deleterious effect was observed when W69 was replaced with alanine or glycine residues. However, the functions lost due to W69 mutations could be progressively restored with amino acids of increasing aliphatic chain length and fully recovered with residues bearing an aromatic ring. Interestingly, poor CD4 binding of W69A could be fully restored by introducing a compensatory mutation within layer 2 (S115W). Structural studies of HIV-1 gp120 coree W69A/S115W mutant bound to the CD4 peptide mimetic M48U1 and Fab of anti-cluster A antibody N60-i3 revealed no perturbations to the overall structure of the double mutant compared to the wild-type protein but identified higher mobility within the interface between layer 1 and layer 2, the bridging sheet region, and the CD4 binding site.IMPORTANCE HIV-1 Env transitions to the CD4-bound conformation are required for viral entry. Previous studies identified a highly conserved residue of the inner domain, W69, as being involved in these conformational transitions (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012). Here, we show that W69, located at the interface between gp120 and gp41 in the PGT151-bound trimer, plays a critical role in the interprotomer signaling induced by CD4 binding. This new information might be useful in immunogen design.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Multimerização Proteica , Substituição de Aminoácidos , Sequência Conservada , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
12.
Proc Natl Acad Sci U S A ; 111(15): 5574-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706897

RESUMO

The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as ß-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to ß-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Cristalino/crescimento & desenvolvimento , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fator de Transcrição Sp1/metabolismo , Sumoilação/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Fatores de Crescimento de Fibroblastos/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Cristalino/citologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Physiol Mol Biol Plants ; 23(4): 877-889, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158636

RESUMO

Size and shape of soybean seeds are closely related to seed yield and market value. Annual wild soybeans have the potential to improve cultivated soybeans, but their inferior seed characteristics should be excluded. To detect quantitative trait loci (QTLs)/segments of seed size and shape traits in annual wild soybean, its chromosome segment substitution lines (CSSLs) derived from NN1138-2 (recurrent parent, Glycine max) and N24852 (donor parent, Glycine soja) and then modified 2 iterations (coded SojaCSSLP3) were improved further to contain more lines (diagonal segments) and less heterozygous and missing portions. The new population (SojaCSSLP4) composed of 195 CSSLs was evaluated under four environments, and 11, 13, 7, 15 and 14 QTLs/segments were detected for seed length (SL), seed width (SW), seed roundness (SR), seed perimeter (SP) and seed cross section area (SA), respectively, with all 60 wild allele effects negative. Among them, 16 QTLs/segments were shared by 2-5 traits, respectively, but 0-3 segments for each of the 5 traits were independent. The non-shared Satt274 and shared Satt305, Satt540 and Satt239 were major segments, along with other segments composed of two different but related sets of genetic systems for SR and the other 4 traits, respectively. Compared with the literature, 7 SL, 5 SW and 2 SR QTLs/segments were also detected in cultivated soybeans; allele distinction took place between cultivated and wild soybeans, and also among cultivated parents. The present mapping is understood as macro-segment mapping, the segments may be further dissected into smaller segments as well as corresponding QTLs/genes.

14.
Bioorg Chem ; 68: 105-11, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475281

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is responsible for the worldwide AIDS pandemic. Due to the lack of prophylactic HIV-1 vaccine, drug treatment of the infected patients becomes essential to reduce the viral load and to slow down progression of the disease. Because of drug resistance, finding new antiviral agents is necessary for AIDS drug therapies. The interaction of gp120 and co-receptor (CCR5/CXCR4) mediates the entry of HIV-1 into host cells, which has been increasingly exploited in recent years as the target for new antiviral agents. A conserved co-receptor binding site on gp120 that recognizes sulfotyrosine (sTyr) residues represents a structural target to design novel HIV entry inhibitors. In this work, we developed an efficient synthesis of sulfotyrosine dipeptide and evaluated it as an HIV-1 entry inhibitor.


Assuntos
Fármacos Anti-HIV/farmacologia , Dipeptídeos/farmacologia , HIV-1/efeitos dos fármacos , Tirosina/análogos & derivados , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , HIV-1/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tirosina/síntese química , Tirosina/química , Tirosina/farmacologia
15.
Mar Drugs ; 14(10)2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727162

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12-19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads.


Assuntos
Acetilcolina/metabolismo , Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Aplysia , Cristalografia por Raios X , Oceanos e Mares , Ligação Proteica , Receptores Nicotínicos/química
16.
Proc Natl Acad Sci U S A ; 110(30): 12438-43, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23757493

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, a membrane-fusing machine, mediates virus entry into host cells and is the sole virus-specific target for neutralizing antibodies. Binding the receptors, CD4 and CCR5/CXCR4, triggers Env conformational changes from the metastable unliganded state to the fusion-active state. We used cryo-electron microscopy to obtain a 6-Å structure of the membrane-bound, heavily glycosylated HIV-1 Env trimer in its uncleaved and unliganded state. The spatial organization of secondary structure elements reveals that the unliganded conformations of both glycoprotein (gp)120 and gp41 subunits differ from those induced by receptor binding. The gp120 trimer association domains, which contribute to interprotomer contacts in the unliganded Env trimer, undergo rearrangement upon CD4 binding. In the unliganded Env, intersubunit interactions maintain the gp41 ectodomain helical bundles in a "spring-loaded" conformation distinct from the extended helical coils of the fusion-active state. Quaternary structure regulates the virus-neutralizing potency of antibodies targeting the conserved CD4-binding site on gp120. The Env trimer architecture provides mechanistic insights into the metastability of the unliganded state, receptor-induced conformational changes, and quaternary structure-based strategies for immune evasion.


Assuntos
Biopolímeros/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Biopolímeros/química , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Evasão da Resposta Imune , Modelos Moleculares
17.
J Virol ; 87(5): 2549-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255784

RESUMO

The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3). Structural rearrangements between layer 1 and layer 2 have been shown to facilitate the transition of the envelope glycoprotein trimer from the unliganded to the CD4-bound state and to stabilize gp120-CD4 interaction. However, our understanding of CD4-induced conformational changes in the gp120 inner domain remains incomplete. Here, we report that a highly conserved element of the gp120 inner domain, layer 3, plays a pivot-like role in these allosteric changes. In the unliganded state, layer 3 modulates the association of gp120 with the Env trimer, probably by influencing the relationship of the gp120 inner and outer domains. Importantly, layer 3 governs the efficiency of the initial gp120 interaction with CD4, a function that can also be fulfilled by filling the Phe43 cavity. This work defines the functional importance of layer 3 and completes a picture detailing the role of the gp120 inner domain in CD4-induced conformational transitions in the HIV-1 Env trimer.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Cães , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Internalização do Vírus
18.
J Biol Chem ; 287(2): 1220-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22105071

RESUMO

Discovery of novel antiretroviral mechanism is essential for the design of innovative antiretroviral therapy. Recently, we and others reported that ectopic expression of Moloney leukemia virus 10 (MOV10) protein strongly inhibits retrovirus replication. MOV10, a putative RNA helicase, can be packaged into HIV-1 virions by binding to the nucleocapsid (NC) region of Gag and inhibit viral replication at a postentry step. Here, we report critical determinants for MOV10 virion packaging and antiviral activity. MOV10 has 1,003 amino acids and seven helicase motifs. We found that MOV10 packaging requires the NC basic linker, and Gag binds to the N-terminal amino acids 261-305 region of MOV10. Our predicted MOV10 three-dimensional structure model indicates that the Gag binding region is located in a structurally exposed domain, which spans amino acids 93-305 and is Cys-His-rich. Simultaneous mutation of residues Cys-188, Cys-195, His-199, His-201, and His-202 in this domain significantly compromised MOV10 anti-HIV-1 activity. Notably, although MOV10-Gag interaction is required, it is not sufficient for MOV10 packaging, which also requires its C-terminal all but one of seven helicase motifs. Moreover, we have mapped the minimal MOV10 antiviral region to amino acids 99-949, indicating that nearly all MOV10 residues are required for its antiviral activity. Mutations of residues Cys-947, Pro-948, and Phe-949 at the C terminus of this region completely disrupted MOV10 anti-HIV-1 activity. Taken together, we have identified two critical MOV10 packaging determinants and eight other critical residues for anti-HIV-1 activity. These results provide a molecular basis for further understanding the MOV10 antiretroviral mechanism.


Assuntos
HIV-1/fisiologia , Modelos Moleculares , Nucleocapsídeo/metabolismo , RNA Helicases/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Humanos , Nucleocapsídeo/genética , Mapeamento de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Helicases/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
19.
J Biol Chem ; 287(10): 7640-51, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22235118

RESUMO

Many viruses use a pH-dependent pathway for fusion with host cell membrane, the mechanism of which is still poorly understood. Here we report that a subtle leucine (Leu)-valine (Val) change at position 501 in the envelope glycoproteins (Envs) of two related retroviruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV), is responsible for their distinct low pH requirements for membrane fusion and infection. The Leu and Val residues are predicted to reside within the C-terminal heptad repeat (HR2) region of JSRV and ENTV Envs, particularly proximal to the hairpin turn of the putative six-helix bundle (6HB). Substitution of the JSRV Leu with a Val blocked the Env-mediated membrane fusion at pH 5.0, whereas replacement of the ENTV Val with a Leu rendered the ENTV Env capable of fusing at pH 5.0. A Leu-Val change has no apparent effect on the stability of native Env, but appears to stabilize an intermediate induced by receptor binding. These results are consistent with the existence of at least two metastable conformations of these viral glycoproteins, the native prefusion conformation and a receptor-induced metastable intermediate. Collectively, this work represents an interesting perhaps unique example whereby a simple Leu-Val change has critical impact on pH-dependent virus fusion and entry.


Assuntos
Substituição de Aminoácidos , Produtos do Gene env/metabolismo , Retrovirus Jaagsiekte de Ovinos/metabolismo , Fusão de Membrana , Estruturas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Produtos do Gene env/genética , Humanos , Concentração de Íons de Hidrogênio , Retrovirus Jaagsiekte de Ovinos/genética , Ovinos , Estruturas Virais/genética
20.
J Virol ; 86(17): 8974-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696649

RESUMO

Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain ß-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD4/química , Antígenos CD4/genética , Células COS , Linhagem Celular , Linhagem da Célula , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/classificação , HIV-1/genética , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/genética , Especificidade da Espécie , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA