Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 491: 117064, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122118

RESUMO

Propylthiouracil (PTU) and methimazole (MMI), two classical antithyroid agents possess risk of drug-induced liver injury (DILI) with unknown mechanism of action. This study aimed to examine and compare their hepatic toxicity using a quantitative system toxicology approach. The impact of PTU and MMI on hepatocyte survival, oxidative stress, mitochondrial function and bile acid transporters were assessed in vitro. The physiologically based pharmacokinetic (PBPK) models of PTU and MMI were constructed while their risk of DILI was calculated by DILIsym, a quantitative systems toxicology (QST) model by integrating the results from in vitro toxicological studies and PBPK models. The simulated DILI (ALT >2 × ULN) incidence for PTU (300 mg/d) was 21.2%, which was within the range observed in clinical practice. Moreover, a threshold dose of 200 mg/d was predicted with oxidative stress proposed as an important toxic mechanism. However, DILIsym predicted a 0% incidence of hepatoxicity caused by MMI (30 mg/d), suggesting that the toxicity of MMI was not mediated through mechanism incorporated into DILIsym. In conclusion, DILIsym appears to be a practical tool to unveil hepatoxicity mechanism and predict clinical risk of DILI.

2.
Semin Cancer Biol ; 80: 379-390, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33002608

RESUMO

Rapid progress in molecular cancer biology coupled with the discovery of novel oncology drugs has opened new horizons for cancer target discovery. As one of the crucial signaling pathways related to tumorigenesis, hypoxia-inducible factor-1 (HIF-1) coordinates the activity of many transcription factors and their downstream molecules that impact tumor growth and metastasis. Accumulating evidence suggests that the transcriptional responses to acute hypoxia are mainly attributable to HIF-1α. Moreover, the overexpression of HIF-1α in several solid cancers has been found to be strongly associated with poor prognosis. Thus, pharmacological targeting of the HIF-1 signaling pathways has been considered as a new strategy for cancer therapy in the recent years. Although over the past decade, tremendous efforts have been made in preclinical studies to develop new HIF-1 inhibitors from natural products (reservoirs of novel therapeutic agents), to date, these efforts have not been successfully translated into clinically available treatments. In this review, we provide new insights into the bio-pharmacological considerations for selecting natural compounds as potential HIF-1 inhibitors to accelerate anti-cancer drug development. In addition, we highlighted the importance of assessing the dependency of cancer on HIF1A to shortlist cancer types as suitable disease models. This may subsequently lead to new paradigms for discovering more HIF-1 inhibitors derived from natural products and facilitate the development of potent therapeutic agents targeting specific cancer types.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia/uso terapêutico , Neoplasias/patologia
3.
Drug Metab Dispos ; 51(11): 1515-1526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643879

RESUMO

Ensartinib (X-396) is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) indicated for the treatment of ALK-positive patients with locally advanced or metastatic non-small cell lung cancer. Although in vitro experiments and molecular docking suggested its potential as a cytochrome P450 inhibitor, no further investigation or clinical trials have been conducted to assess its drug-drug interaction (DDI) risk. In this study, we conducted a series of in vitro experiments to elucidate the inhibition mechanism of ensartinib. Furthermore, a physiologically-based pharmacokinetic (PBPK) model was developed based on in vitro, in silico, and in vivo parameters, verified using clinical data, and applied to predict the clinical DDI mediated by ensartinib. The in vitro incubation experiments suggested that ensartinib exhibited strong time-dependent inhibition. Simulation results from the PBPK model indicated a significant increase in the exposure of CYP3A substrates in the presence of ensartinib, with the maximal plasma concentration and area under the plasma concentration-time curve increasing up to 12-fold and 29-fold for sensitive substrates. Based on these findings, it is evident that co-administration of ensartinib and CYP3A substrates requires careful regulatory consideration. SIGNIFICANCE STATEMENT: Ensartinib was found to be a strong time-dependent inhibitor of CYP3A for the first time based on in vitro experiments, but there was no research conducted to estimate the risk of drug-drug interaction (DDI) of ensartinib in clinic. Therefore, the first ensartinib physiologically based pharmacokinetic model was developed and applied to predict various untested scenarios. The simulation result indicated that the exposure of CYP3A substrate increased significantly and urged the further clinical DDI study.

4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614199

RESUMO

This study investigated the antitumor effects of foretinib on triple-negative breast cancer cells MDA-MB-231 xenograft tumors in vivo underlying phosphorylated mesenchymal to epithelial transition (p-MET)/ hepatocyte growth factor (HGF)-related mechanism, as well as its pharmacokinetic characteristics. The MDA-MB-231 human breast cancer cell line was used for in vitro experiments, and the tumor xenograft model was established for in vivo experiments. MDA-MB-231 xenograft mice received oral foretinib (15 or 50 mg/kg/day) or vehicle for 18 days. The xenograft tumors were collected. Protein expressions of p-MET and HGF were examined with Western blotting and immunohistochemical staining. The mRNA expression of MET was examined with real-time PCR. Blood samples were collected from the mice treated with foretinib under different doses of 2, 10, and 50 mg/kg, and the pharmacokinetic profiles of foretinib were evaluated. We found that foretinib treatment caused a significant inhibition in tumor growth in a dose-dependent manner, whereas the continuous administration did not result in weight loss in treated nude mice. In both MDA-MB-231 cells and xenograft tumors, foretinib suppressed the expression of p-MET and HGF. These findings reveal that the decrease of p-MET and HGF may play an important role in the anti-breast cancer properties of foretinib.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células
5.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677893

RESUMO

Novel furoxan/coumarin hybrids were synthesized, and pharmacologic studies showed that the compounds displayed potent antiproliferation activities via downregulating both the phosphatidylinositide 3-kinase (PI3K) pathway and the mitogen-activated protein kinase (MAPK) pathway. To investigate the preclinical pharmacokinetic (PK) properties of three candidate compounds (CY-14S-4A83, CY-16S-4A43, and CY-16S-4A93), liquid chromatography, in tandem with the mass spectrometry LC-MS/MS method, was developed and validated for the simultaneous determination of these compounds. The absorption, distribution, metabolism, and excretion (ADME) properties were investigated in in vitro studies and in rats. Meanwhile, physiologically based pharmacokinetic (PBPK) models were constructed using only in vitro data to obtain detailed PK information. Good linearity was observed over the concentration range of 0.01−1.0 µg/mL. The free drug fraction (fu) values of the compounds were less than 3%, and the clearance (CL) values were 414.5 ± 145.7 mL/h/kg, 2624.6 ± 648.4 mL/h/kg, and 500.6 ± 195.2 mL/h/kg, respectively. The predicted peak plasma concentration (Cmax) and the area under the concentration-time curve (AUC) were overestimated for the CY-16S-4A43 PBPK model compared with the experimental ones (fold error > 2), suggesting that tissue accumulation and additional elimination pathways may exist. In conclusion, the LC-MS/MS method was successively applied in the preclinical PK studies, and the detailed information from PBPK modeling may improve decision-making in subsequent new drug development.


Assuntos
Oxidiazóis , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cumarínicos , Modelos Biológicos , Farmacocinética
6.
Semin Cancer Biol ; 74: 105-120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989735

RESUMO

Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.


Assuntos
Biomarcadores Tumorais/análise , Vesículas Extracelulares , Neoplasias/diagnóstico , Animais , Humanos , Biópsia Líquida/métodos
7.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662475

RESUMO

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Fosfoglicerato Mutase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Terapia de Alvo Molecular , Transplante de Neoplasias , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
8.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562875

RESUMO

Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug-drug interaction (DDI) with tacrolimus. To identify the extent of this DDI, the enzymes' inhibitory profiles, including a 50% inhibitory concentration (IC50) shift, reversible inhibition (RI) and time-dependent inhibition (TDI) were examined with pooled human-liver microsomes (HLMs) and CYP3A5-genotyped HLMs. Subsequently, the acquired parameters were integrated into a physiologically based pharmacokinetic (PBPK) model to quantify the interactions between the SZA/SZB and the tacrolimus. The metabolic studies indicated that the SZB displayed both RI and TDI on CYP3A4 and CYP3A5, while the SZA only exhibited TDI on CYP3A4 to a limited extent. Moreover, our PBPK model predicted that multiple doses of SZB would increase tacrolimus exposure by 26% and 57% in CYP3A5 expressers and non-expressers, respectively. Clearly, PBPK modeling has emerged as a powerful approach to examine herb-involved DDI, and special attention should be paid to the combined use of WZC and tacrolimus in clinical practice.


Assuntos
Citocromo P-450 CYP3A , Tacrolimo , Ciclo-Octanos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450 , Dioxóis , Interações Medicamentosas , Humanos , Imunossupressores/farmacocinética , Lignanas , Modelos Biológicos , Compostos Policíclicos , Tacrolimo/farmacocinética
9.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557804

RESUMO

Natural medicine has been widely used for clinical treatment and health care in many countries and regions. Additionally, extracting active ingredients from traditional Chinese medicine and other natural plants, defining their chemical structure and pharmacological effects, and screening potential druggable candidates are also uprising directions in new drug research and development. Physiologically based pharmacokinetic (PBPK) modeling is a mathematical modeling technique that simulates the absorption, distribution, metabolism, and elimination of drugs in various tissues and organs in vivo based on physiological and anatomical characteristics and physicochemical properties. PBPK modeling in drug research and development has gradually been recognized by regulatory authorities in recent years, including the U.S. Food and Drug Administration. This review summarizes the general situation and shortcomings of the current research on the pharmacokinetics of natural medicine and introduces the concept and the advantages of the PBPK model in the study of pharmacokinetics of natural medicine. Finally, the pharmacokinetic studies of natural medicine using the PBPK models are summed up, followed by discussions on the applications of PBPK modeling to the enzyme-mediated pharmacokinetic changes, special populations, new drug research and development, and new indication adding for natural medicine. This paper aims to provide a novel strategy for the preclinical research and clinical use of natural medicine.


Assuntos
Medicina , Preparações Farmacêuticas/química , Modelos Biológicos , Farmacocinética
10.
Br J Clin Pharmacol ; 87(7): 2790-2806, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33269470

RESUMO

AIMS: Hypertension is a common comorbidity of patients with COVID-19, SARS or HIV infection. Such patients are often concomitantly treated with antiviral and antihypertensive agents, including ritonavir and nifedipine. Since ritonavir is a strong inhibitor of CYP3A and nifedipine is mainly metabolized via CYP3A, the combination of ritonavir and nifedipine can potentially cause drug-drug interactions. This study provides guidance on nifedipine treatment during and after coadministration with ritonavir-containing regimens, using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) analysis. METHODS: The PBPK/PD models for 3 formations of nifedipine were developed based on the Simcyp nifedipine model and the models were verified using published data. The effects of ritonavir on nifedipine exposure and systolic blood pressure (SBP) were assessed for instant-release, sustained-release and controlled-release formulations in patients. Various nifedipine regimens were investigated when coadministered with or without ritonavir. RESULTS: PBPK/PD models for 3 formulations of nifedipine were successfully established. The predicted maximum concentration (Cmax ), area under plasma concentration-time curve (AUC), maximum reduction in SBP and area under effect-time curve were all within 0.5-2.0-fold of the observed data. Model simulations showed that the inhibitory effect of ritonavir on CYP3A4 increased the Cmax of nifedipine 17.92-48.85-fold and the AUC 63.30-84.01-fold at steady state and decreased the SBP by >40 mmHg. Thus, the combination of nifedipine and ritonavir could lead to severe hypotension. CONCLUSION: Ritonavir significantly affects the pharmacokinetics and antihypertensive effect of nifedipine. It is not recommended for patients to take nifedipine- and ritonavir-containing regimens simultaneously.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por HIV , Antivirais/uso terapêutico , Área Sob a Curva , Interações Medicamentosas , Infecções por HIV/tratamento farmacológico , Humanos , Modelos Biológicos , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Ritonavir/farmacologia , SARS-CoV-2
11.
Br J Clin Pharmacol ; 87(4): 1990-1999, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33037681

RESUMO

AIMS: Vincristine (VCR) is a key drug in the successful multidrug chemotherapy for childhood acute lymphoblastic leukaemia (ALL). However, it remains unclear how VCR pharmacokinetics affects its antileukaemic efficacy. The objective of this study is to explore the VCR pharmacokinetic parameters and intracellular VCR levels in an up-front window of Ma-Spore ALL 2010 (MS2010) study. METHODS: We randomised 429 children with newly diagnosed ALL to 15-minute vs 3-hour infusion for the first dose of VCR to study if prolonging the first dose of VCR infusion improved response. In a subgroup of 115 B-ALL and 20 T-ALL patients, we performed VCR plasma (n = 135 patients) and intracellular (n = 66 patients) pharmacokinetic studies. The correlations between pharmacokinetic parameters and intracellular VCR levels with early treatment response, final outcome and ABCB1 genotypes were analysed. RESULTS: There was no significant difference between 15-minute and 3-hour infusion schedules in median Day 8 peripheral or bone marrow blast response. Plasma VCR pharmacokinetic parameters did not predict outcome. However, in B-ALL, Day 33 minimal residual disease (MRD) negative patients and patients in continuous complete remission had significantly higher median intracellular VCR24h levels (P = .03 and P = .04, respectively). The median VCR24h intracellular levels were similar among the common genetic subtypes of ALL (P = .4). Patients homozygous for wild-type ABCB1 2677GG had significantly higher median intracellular VCR24h (P = .04) than 2677TT. CONCLUSION: We showed that in childhood B-ALL, the intracellular VCR24h levels in lymphoblasts affected treatment outcomes. The intracellular VCR24h level was independent of leukaemia subtype but dependent on host ABCB1 G2677T genotype.


Assuntos
Linfoma não Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Esporos , Resultado do Tratamento , Vincristina
12.
Arch Toxicol ; 95(5): 1683-1701, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713150

RESUMO

The risk of drug-induced liver injury (DILI) poses a major challenge for development of natural products derived from traditional Chinese medicines (NP-TCMs). It is urgent to find a new method for the safety assessment of the NP-TCMs. Recent study has reported an in vitro/in silico method to estimate the acceptable daily intake of hepatotoxic compounds using support vector machine (SVM) classifier and physiologically based pharmacokinetic (PBPK) modeling. However, this method is not suitable for estimating the dosing schedule of compounds which are administered in multiple daily doses. Thus, in this study, the method mentioned above was in particular optimized, and used to estimate the hepatotoxic plasma concentrations of 17 NP-TCMs. Additionally, the oral dosing schedules of the triptolide, emodin, matrine and oxymatrine were also predicted by the SVM classifier and PBPK modeling. The optimization included that: (1) in vitro cytotoxicity data of 28 training set compounds was optimized using benchmark concentrations (BMC) modeling; (2) AUC of the training set compound was used as the in vivo metric instead of Cmax to better reflect the total daily exposure of compounds which are administered in multiple daily doses; (3) using the mean AUC in plasma as in vivo metric and BMC value as in vitro metric could achieve the better toxicity separation index (0.962 vs. 0.938); (4) The TSI for Cmax and BMC values was 0.985 calculated in this study, and the results indicated that BMC modeling improved the separation performance. This optimized in vitro-in vivo extrapolation (IVIVE) workflow could extrapolate in vitro BMC to blood concentrations and the oral dosing schedule which are corresponding to certain risk of hepatotoxicity. The estimated safe dosing schedule of oxymatrine by this optimized method was close to the clinical recommended dosing regimen. The results indicate that the optimized method could be used to predict the dosing schedule of compounds administered in multiple daily doses, and our optimized workflow could be helpful for the safety assessment as well as the research and development on NP-TCMs.


Assuntos
Produtos Biológicos/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , China , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Técnicas In Vitro , Medicina Tradicional Chinesa , Modelos Biológicos , Máquina de Vetores de Suporte
13.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652827

RESUMO

The application of physiologically based pharmacokinetic models to nanoparticles is still very restricted and challenging, owing to the complicated in vivo transport mechanisms involving nanoparticles, including phagocytosis, enhanced permeability and retention effects, cellular recognition, and internalisation, enzymatic degradation, lymphatic transport, and changes in physical properties. In our study, five nanoparticle formulations were synthesised using polycaprolactone as a framework material and methoxy poly (ethylene glycol)-poly(ε-caprolactone) as a long-circulating decorating material, as well as types of environmentally responsive near-infrared aza-boron-dipyrromethene dyes. According to quantification data and direct visualisation involving specific organs, a phagocytosis physiologically based pharmacokinetic model was developed to describe the dynamics of nanoparticles within and between organs in mice, considering cellular mechanisms involving phagocytosis and enhanced permeability and retention effects. Our results offer a better understanding of the in vivo fate of polymeric nanoparticles.


Assuntos
Corantes/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Farmacocinética , Animais , Simulação por Computador , Humanos , Camundongos , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química
14.
AAPS PharmSciTech ; 22(1): 15, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389269

RESUMO

The present study endeavored to develop orodispersible films (ODFs) containing 30 mg racecadotril for pediatric use, which focuses on improving the compliance of pediatric patients and reducing risk of choking. The challenge of this study is to prepare high drug loading ODFs with successful mechanical and physicochemical properties. Compatibilities between drug and different polymers (hydroxypropyl methylcellulose, HPMC; polyvinyl alcohol, PVA; low-substituted hydroxypropyl cellulose, L-HPC; pullulan, PU) were investigated to select stable and safe film-forming polymers. Afterwards, the study explored the maximum amount of racecadotril incorporated into PVA films and PU films. Subsequently, disintegrant (Lycoat RS720, 4-10%, w/w) and plasticizers (glycerol, 2-6%, w/w) were investigated to reduce disintegration time of PVA films and enhance the flexibility of PU films, respectively. Formulation characteristics (appearance, tensile strength, percent elongation, disintegration time, drug content, weight, thickness, pH value, moisture content, moisture uptake, and Q5min) of prepared ODFs were examined to obtain the optimal compositions of racecadotril ODFs. Differential scanning calorimetry (DSC) study, powder X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) study, comparative in vitro dissolution study, and pharmacokinetic study in Beagle dogs of optimized racecadotril ODFs were then conducted. Eventually, ODFs containing 50% racecadotril, 38% PVA, 7% Lycoat RS720, 2% sucralose, 2% apricot, and 1% titanium dioxide could achieve desirable mechanical properties, disintegrating within a few seconds and releasing more than 85% drug within 5 min in four dissolution media. An in vivo study showed optimized racecadotril ODF and Hidrasec were bioequivalent in Beagle dogs. In summary, ODFs containing 30 mg racecadotril were successfully prepared by solvent casting method, and it was suitable for the administration to the pediatric patients.


Assuntos
Antidiarreicos/farmacologia , Tiorfano/análogos & derivados , Resinas Acrílicas/química , Administração Oral , Antidiarreicos/administração & dosagem , Varredura Diferencial de Calorimetria , Celulose/análogos & derivados , Criança , Formas de Dosagem , Excipientes/química , Humanos , Derivados da Hipromelose/química , Técnicas In Vitro , Pediatria , Álcool de Polivinil/química , Pós , Solubilidade , Solventes/química , Tiorfano/administração & dosagem , Tiorfano/farmacologia , Difração de Raios X
15.
Pharmacol Res ; 156: 104686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32068118

RESUMO

Cell cycle dysregulation, characterised by aberrant activation of cyclin dependent kinases (CDKs), is a hallmark of cancer. After years of research on the first and second generations of less selective CDK inhibitors with unfavourable clinical activity and toxicity profiles, CDK4/6 inhibitors become the first and only class of highly specific CDK inhibitors being approved for cancer treatment to date. CDK4/6 inhibitors have transformed the treatment paradigm of estrogen receptor-positive (ER+) breast cancer, dramatically improving the survival outcomes of these patients when incorporated with conventional endocrine therapies in both the first and later-line settings. Currently, the efficacies of CDK4/6 inhibitors in other breast cancer subtypes and cancers are being actively explored. All three CDK4/6 inhibitors have demonstrated very similar clinical efficacies. However, being the least similar structurally, abemaciclib is the only CDK4/6 inhibitor with single agent activity in refractory metastatic ER + breast cancer, the ability to cross the blood brain barrier efficiently, and a distinct toxicity profile of lower myelosuppression such that it can be dosed continuously. Here, we further discuss the distinguishing features of abemaciclib as compared to the other two CDK4/6 inhibitors, palbociclib and ribociclib. Besides being the most potent inhibitor of CDK4/6, abemaciclib exhibits a wider selectivity towards other CDKs and kinases, and functions through additional mechanisms of action besides inducing G1 cell cycle arrest, in a dose dependent manner. Hence, abemaciclib has the potential to act independently of the CDK4/6-cyclin D-RB pathway, resulting in crucial implications on the possibly expanded clinical indications and predictive biomarkers of abemaciclib, in contrast to the other CDK4/6 inhibitors. The current status of preclinical evidence and clinical studies of abemaciclib as a single agent and in combination treatment in breast and other cancers, together with its potential predictive biomarkers, is also summarised in this review.


Assuntos
Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Aminopiridinas/efeitos adversos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis/efeitos adversos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais , Resultado do Tratamento
16.
Arch Toxicol ; 94(1): 231-244, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740989

RESUMO

Methimazole (MMI), the first-line anti-thyroid agent used in clinical practice is known to induce hepatotoxicity in patients with Grave's disease (GD), although its exact mechanism remains largely unclear. This cohort study aimed to examine the mechanism of MMI-induced hepatotoxicity using metabolomic approach. A total of 40 GD patients with MMI-induced hepatotoxicity (responders) and 80 GD patients without MMI-induced hepatotoxicity (non-responders) were included in this study and their plasma metabolomics was profiled with targeted gas chromatography-tandem mass spectrometry (GC-MS/MS). The plasma levels of 42 metabolites, including glucuronic acid, some amino acids, fatty acids, ethanolamine and octopamine were found to be significantly different between responders and non-responders. In agreement with our previous genotyping data, the genetic polymorphism of uridine 5'-diphospho-glucuronosyltransferase (UGT)1A1*6, which affects the glucuronidation activity and circulating glucuronic acid level was identified as one of the determinants of MMI-induced hepatotoxicity. Plasma level of ethanolamine has a significant correlation with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. The pathway analyses further revealed that monoamine oxidase (MAO) inhibition, reactive oxygen species (ROS) production, mitochondria dysfunction, and DNA disruption might contribute to MMI-induced hepatotoxicity. Interestingly, the metabolomic data further suggested the responders had a higher risk of developing osteoporosis and fatty liver disease in comparison to the non-responders. This mechanistic study sheds light on the pathogenesis of MMI-induced hepatotoxicity and prompts personalized prescription of MMI based on UGT1A1*6 genotype in the management of GD.


Assuntos
Antitireóideos/efeitos adversos , Sangue/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença de Graves/tratamento farmacológico , Metimazol/efeitos adversos , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Sangue/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucuronosiltransferase/genética , Doença de Graves/metabolismo , Humanos , Masculino , Metabolômica/métodos , Resultado do Tratamento
17.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007833

RESUMO

In this work, a biological retina inspired tone mapping processor for high-speed and energy-efficient image enhancement has been proposed. To achieve high throughput and high energy efficiency, several hardware design techniques have been proposed, including data partition based parallel processing with S-shape sliding, adjacent frame feature sharing, multi-layer convolution pipelining, and convolution filter compression with zero skipping convolution. Implemented on a Xilinx's Virtex7 FPGA, the proposed design achieves a high throughput of 189 frames per second for 1024 × 768 RGB images while consuming 819 mW. Compared with several state-of-the-art tone mapping processors, the proposed design shows higher throughput and energy efficiency. It is suitable for high-speed and energy-constrained image enhancement applications.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Retina/diagnóstico por imagem , Desenho de Equipamento , Humanos
18.
AAPS PharmSciTech ; 21(7): 245, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32856178

RESUMO

The purpose of this study was to investigate the impacts of the formulation parameters on the pharmacokinetics and bioequivalence of risperidone orodispersible film (ODF) using physiologically based pharmacokinetic model. The pharmacokinetic profiles of two risperidone ODFs, which exhibit different in vitro dissolution, were examined in Beagle dogs after supralingual administration. Subsequently, a physiologically based pharmacokinetic (PBPK) model was constructed to evaluate the in vivo performance of risperidone ODF. The parameter sensitivity analysis (PSA) was used to access the impacts of formulation parameters on the pharmacokinetics of risperidone. Moreover, the validated PBPK model was applied to predict human pharmacokinetic profiles and examine the bioequivalence of these two ODFs. These two ODFs displayed similar risperidone pharmacokinetic profiles in dogs. The parameter sensitivity analysis indicated that the changes in the solubility, particle size, particle density, and diffusion coefficient did not have obvious influence on the in vivo properties of risperidone ODF. Alternation of the in vitro complete dissolution time in water from 15 to 30 min led to a 30% decrease in Cmax and 20% of increase in Tmax. AUC0-∞ would be decreased if risperidone was not fully released within 1 h. As both ODFs completely released risperidone within 15 min, the difference in the extent of in vivo absorption, intestinal regional absorption location, and plasma concentration-time curves between these two ODFs was almost negligible. Consequently, a bioequivalence was foreseen in humans. The in vitro cumulative dissolution percentage in water at 15 min was found to be the major determinant on the in vivo properties of risperidone ODF. PBPK modeling appears to be an innovative strategy to guide the development of risperidone ODF.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Modelos Biológicos , Risperidona/administração & dosagem , Risperidona/farmacocinética , Administração Oral , Animais , Cães , Feminino , Humanos , Masculino , Tamanho da Partícula , Risperidona/química , Antagonistas da Serotonina/administração & dosagem , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacocinética , Solubilidade , Equivalência Terapêutica
19.
Acta Pharmacol Sin ; 39(9): 1522-1532, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29644999

RESUMO

Liver metabolism is commonly considered the major determinant in drug discovery and development. Many in vitro drug metabolic studies have been developed and applied to understand biotransformation. However, these methods have disadvantages, resulting in inconsistencies between in vivo and in vitro experiments. A major factor is that they are static systems that do not consider the transport process in the liver. Here we developed an in vitro dynamic metabolic system (Bio-PK metabolic system) to mimic the human pharmacokinetics of tolbutamide. Human liver microsomes (HLMs) encapsulated in a F127'-Acr-Bis hydrogel (FAB hydrogel) were placed in the incubation system. A microdialysis sampling technique was used to monitor the metabolic behavior of tolbutamide in hydrogels. The measured results in the system were used to fit the in vitro intrinsic clearance of tolbutamide with a mathematical model. Then, a PBPK model that integrated the corresponding in vitro intrinsic clearance was developed to verify the system. Compared to the traditional incubation method, reasonable PK profiles and the in vivo clearance of tolbutamide could be predicted by integrating the intrinsic clearance of tolbutamide obtained from the Bio-PK metabolic system into the PBPK model. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC), time to reach the maximum plasma concentration (Tmax) and in vivo clearance were consistent with the clinically observed data. This novel in vitro dynamic metabolic system can compensate for some limitations of traditional incubation methods; it may provide a new method for screening compounds and predicting pharmacokinetics in the early stages, supporting the development of compounds.


Assuntos
Microssomos Hepáticos/metabolismo , Tolbutamida/farmacocinética , Difusão , Feminino , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Masculino , Microdiálise/métodos , Modelos Teóricos , Poloxâmero/síntese química , Poloxâmero/química , Tolbutamida/metabolismo
20.
Xenobiotica ; 48(4): 368-375, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28532263

RESUMO

1. A novel bio-pharmacokinetic/pharmacodynamic (PK/PD) system was established and assessed in predicting the PK parameters and PD effects of the model drug cyclophosphamide (CP) considering the interrelationships between drug metabolism, pharmacological effects and dynamic blood circulation processes in vitro. 2. The system contains a peristaltic pump, a reaction chamber with rat liver microsomes (RLMs) encapsulated in pluronic F127-acrylamide-bisacrylamide (FAB) hydrogels, an effector cell chamber and a recirculating pipeline. The metabolism and pharmacological effects of CP (5, 10 and 20 mM) were measured by HPLC and MTT assay. A mathematical model based on mass balance was used to predict the in vitro clearance of CP. In vivo clearance of CP was estimated by in vitro to in vivo extrapolations (IVIVE) and simulations using Simcyp® software. 3. The predicted in vivo clearance of CP at concentrations of 5, 10 and 20 mM was 11.36, 10.12 and 10.68 mL/min/kg, respectively, within two-fold differences compared with the reported 11.1 mL/min/kg. The survival ratio of effector cells during the metabolism and circulation of CP was significantly enhanced. 4. This system may serve as an alternative approach to predict in vivo metabolism, pharmacological effects and toxicity of drugs, ensuring an efficient drug screening process.


Assuntos
Reatores Biológicos , Ciclofosfamida/farmacocinética , Microssomos Hepáticos/metabolismo , Animais , Ciclofosfamida/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células MCF-7 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA