Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112659, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996665

RESUMO

Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.

2.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769167

RESUMO

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Assuntos
Neoplasias Ósseas , Metionina , Mitocôndrias , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Metionina/deficiência , Metionina/metabolismo , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metástase Neoplásica , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA