Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Ther ; 31(1): 154-173, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36068919

RESUMO

Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.


Assuntos
Tolerância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos , NF-kappa B , Sepse , Fatores de Transcrição , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , NF-kappa B/metabolismo , Sepse/imunologia , Sepse/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Hospedeiro Imunocomprometido
2.
Cell Mol Life Sci ; 79(3): 154, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218422

RESUMO

The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.


Assuntos
Cóclea/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteoma/análise , Transcriptoma , Animais , Cromatografia Líquida de Alta Pressão , Cóclea/citologia , Ontologia Genética , Camundongos , MicroRNAs/genética , Proteômica/métodos , Espectrometria de Massas em Tandem , Fatores de Tempo
3.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1013-L1024, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724098

RESUMO

Mechanical ventilation-induced pulmonary fibrosis plays an important role in the high mortality rate of acute respiratory distress syndrome (ARDS). Resolvin D1 (RvD1) displays potent proresolving activities. Epithelial-mesenchymal transition (EMT) has been proved to be an important pathological feature of lung fibrosis. This study aimed to investigate whether RvD1 can attenuate mechanical ventilation-induced lung fibrosis. Human lung epithelial (BEAS-2B) cells were pretreated with RvD1 for 30 min and exposed to acid for 10 min before being subjected to mechanical stretch for 48 h. C57BL/6 mice were subjected to intratracheal acid aspiration followed by mechanical ventilation 24 h later (peak inspiratory pressure 22 cmH2O, positive end-expiratory pressure 2 cmH2O, and respiratory rate 120 breaths/min for 2 h). RvD1 was injected into mice for 5 consecutive days after mechanical ventilation. Treatment with RvD1 significantly inhibited mechanical stretch-induced mesenchymal markers (vimentin and α-smooth muscle actin) and stimulated epithelial markers (E-cadherin). Tert-butyloxycarbonyl 2 (BOC-2), a lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) antagonist, is known to inhibit ALX/FPR2 function. BOC-2 could reverse the beneficial effects of RvD1. The antifibrotic effect of RvD1 was associated with the suppression of Smad2/3 phosphorylation. This study demonstrated that mechanical stretch could induce EMT and pulmonary fibrosis and that treatment with RvD1 could attenuate mechanical ventilation-induced lung fibrosis, thus highlighting RvD1 as an effective therapeutic agent against pulmonary fibrosis associated with mechanical ventilation.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Transição Epitelial-Mesenquimal/fisiologia , Fibrose Pulmonar/patologia , Respiração Artificial/efeitos adversos , Estresse Mecânico , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle
4.
Lab Invest ; 99(8): 1143-1156, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30911150

RESUMO

Acute respiratory distress syndrome (ARDS) is a uniform progression of overwhelming inflammation in lung tissue with extensive infiltration of inflammatory cells. Neutrophil apoptosis is thought to be a significant process in the control of the resolution phase of inflammation. It has been proved that 5-Aza-2'-deoxycytidine (Aza) can inhibit cancer by activating death-associated protein kinase 1 (DAPK1) to promote apoptosis. However, the effect of DAPK1 on neutrophil apoptosis is unclear, and research on the role of Aza in inflammation is lacking. Here, we investigated whether Aza can regulate DAPK1 expression to influence the fate of neutrophils in ARDS. In vitro, we stimulated neutrophil-like HL-60 (dHL-60) cells with different concentrations of Aza for different durations and used RNA interference to up- or downregulate DAPK1 expression. We observed that culturing dHL-60 cells with Aza increased apoptosis by inhibiting NF-κB activation to modulate the expression of Bcl-2 family proteins, which was closely related to the levels of DAPK1. In vivo, ARDS was evoked by intratracheal instillation of lipopolysaccharide (LPS; 3 mg/kg). One hour after LPS administration, mice were treated with Aza (1 mg/kg, i.p.). To inhibit DAPK1 expression, mice were intraperitoneally injected with a DAPK1 inhibitor. Aza treatment accelerated inflammatory resolution in LPS-induced ARDS by suppressing pulmonary edema, alleviating lung injury and decreasing the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, Aza reduced the production of proinflammatory cytokines. However, administration of the DAPK1 inhibitor attenuated the protective effects of Aza. Similarly, the proapoptotic function of Aza was prevented when DAPK1 was inhibited either in vivo or in vitro. In summary, Aza promotes neutrophil apoptosis by activating DAPK1 to accelerate inflammatory resolution in LPS-induced ARDS. This study provides the first evidence that Aza prevents LPS-induced neutrophil survival by modulating DAPK1 expression.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular , Inflamação/metabolismo , Neutrófilos/efeitos dos fármacos , Síndrome do Desconforto Respiratório/metabolismo , Animais , Citocinas/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/farmacologia , Decitabina/metabolismo , Decitabina/farmacologia , Modelos Animais de Doenças , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Artigo em Inglês | MEDLINE | ID: mdl-38365102

RESUMO

BACKGROUND: Brain dynamics underlie complex forms of flexible cognition or the ability to shift between different mental modes. However, the precise dynamic reconfiguration based on multi-layer network analysis and the genetic mechanisms of major depressive disorder (MDD) remains unclear. METHODS: Resting-state functional magnetic resonance imaging (fMRI) data were acquired from the REST-meta-MDD consortium, including 555 patients with MDD and 536 healthy controls (HC). A time-varying multi-layer network was constructed, and dynamic modular characteristics were used to investigate the network reconfiguration. Additionally, partial least squares regression analysis was performed using transcriptional data provided by the Allen Human Brain Atlas (AHBA) to identify genes associated with atypical dynamic network reconfiguration in MDD. RESULTS: In comparison to HC, patients with MDD exhibited lower global and local recruitment coefficients. The local reduction was particularly evident in the salience and subcortical networks. Spatial transcriptome correlation analysis revealed an association between gene expression profiles and atypical dynamic network reconfiguration observed in MDD. Further functional enrichment analyses indicated that positively weighted reconfiguration-related genes were primarily associated with metabolic and biosynthetic pathways. Additionally, negatively enriched genes were predominantly related to programmed cell death-related terms. CONCLUSIONS: Our findings offer robust evidence of the atypical dynamic reconfiguration in patients with MDD from a novel perspective. These results offer valuable insights for further exploration into the mechanisms underlying MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Encéfalo/diagnóstico por imagem
6.
Sci Rep ; 9(1): 2583, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796286

RESUMO

The programmed intermittent epidural bolus (PIEB) technique offers multiple benefits over continuous epidural infusion (CEI), but controversy still exists when it is used in conjunction with a parturient-controlled epidural analgesia (PCEA) regimen. A systematic review and meta-analysis was thus conducted using the Medline, EMBASE, CENTRAL and Web of Science databases with the aim of identifying those randomized controlled trials (RCTs) that performed a comparison between PIEB and CEI in healthy parturients using a PCEA regimen with regard to the duration of labor, labor pain, anesthesia interventions, maternal satisfaction and main side effects. The data were analyzed using a random-effects model. Eleven eligible trials were included, in which 717 participants were allocated to the PIEB + PCEA group and 650 patients were allocated to the CEI + PCEA group. The rate of instrumental delivery, incidence of breakthrough pain, PCEA usage rates and local anesthetic usage were significantly reduced, the labor duration was statistically shorter, and the maternal satisfaction score was significantly improved in the PIEB + PCEA group compared with that in the CEI + PCEA group. There were no differences in the side effects between the two groups. The results of the present study suggest that the PIEB technique in conjunction with the PCEA regimen was more advantageous than CEI + PCEA, but additional studies should be conducted to consistently demonstrate an improvement in the maternal and fetal obstetric outcomes.


Assuntos
Analgesia Epidural/métodos , Analgesia Obstétrica/métodos , Analgesia Controlada pelo Paciente/métodos , Infusões Parenterais/métodos , Trabalho de Parto/efeitos dos fármacos , Adulto , Anestesia Epidural/métodos , Anestésicos Locais/administração & dosagem , Feminino , Humanos , Manejo da Dor , Medição da Dor/métodos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Int Immunopharmacol ; 69: 289-298, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30753968

RESUMO

The timely resolution of pulmonary inflammation coordinated by endogenous pro-resolving mediators helps limit lung tissue injury, but few endogenous pro-resolving mediators that are normally operative during acute inflammation. The protective effects of BML-111 (5(S)-6(R)-7-trihydroxyheptanoic acid methyl ester), a potent commercially available anti-inflammatory and pro-resolving mediator, on ventilation-induced lung injury (VILI) have been extensively studied, but its characteristics as a pro-resolving mediator have not. Here, anesthetized Sprague-Dawley rats were ventilated with a high tidal volume (20 mL/kg, HVT) for 1 h and randomly allocated to recover for 6, 12, 24, 48, 72, 96 or 168 h; BML-111 was administered at the peak of inflammation to evaluate its pro-resolving effect on VILI. The one-hour HVT induced a maximal pulmonary inflammatory response at 12 h that was largely resolved by 72 h. BML-111 largely resolved the maximal inflammatory response at 48 h; the resolution interval (Ri) was shortened by 26 h. Similarly, HVT elicited a time course of changes in histopathology and pulmonary edema, and BML-111 alleviates these changes. Mechanistically, neutrophil apoptosis was significantly increased in BML-111-treated rats subjected to HVT. The apoptosis inhibitor z-VAD-fmk partially reversed the proapoptotic actions of BML-111 on neutrophil and the resolving effects of BML-111 on VILI but had no effect alone. Importantly, the HVT treatment activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) and NF-κB signaling pathways in the lung tissue, and BML-111 further induced Nrf2 and HO-1 expression but inhibited the NF-κB pathway. Intriguingly, when we inhibited the Nrf2/HO-1 pathway with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), Nrf2 expression was further increased, but the inhibitory effects of BML-111 on the NF-κB pathway and on the subsequent inflammatory response, and the proapoptotic actions on neutrophil were reversed. The results suggest that BML-111 promotes the resolution of HVT-induced inflammation to mitigate VILI in rats, perhaps by modulating the Nrf2/HO-1 and NF-κB pathways and subsequently increasing neutrophil apoptosis.


Assuntos
Ácidos Heptanoicos/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Neutrófilos/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Humanos , Pulmão/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Protoporfirinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
8.
Int Immunopharmacol ; 77: 105973, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677992

RESUMO

Sepsis is a syndrome of life-threatening organ dysfunction caused by dysregulated host responses to infection. Macrophage polarization is a key process involved in the pathogenesis of sepsis. Recent evidence has demonstrated that autophagy participates in the regulation of macrophage polarization in different phases of inflammation. Here, we investigated whether trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the macrophage M2 phenotype by enhancing autophagy to counteract excessive inflammation in a cecal ligation and puncture (CLP) mouse model. TSA stimulation increased the proportions of M2 marker (CD206, CD124 and CD23)-labeled RAW264.7 macrophages. Furthermore, with increasing TSA doses, autophagy was enhanced gradually. Interestingly, the autophagy activator rapamycin (Rap), also known as an mTOR inhibitor, unexpectedly decreased the proportions of M2 marker-labeled macrophages. However, TSA treatment reversed the Rap-induced decreases in CD206-labeled macrophages. Next, we stimulated different groups of RAW264.7 cells with the autophagy inhibitors MHY1485 or 3-methyladenine (3-MA). Inhibition of autophagy at any stage in the process suppressed TSA-induced macrophage M2 polarization, but the effect was not associated with mTOR activity. In vivo, TSA administration promoted peritoneal macrophage M2 polarization, increased LC3 II expression, attenuated sepsis-induced organ (lung, liver and kidney) injury, and altered systemic inflammatory cytokine secretion. However, 3-MA abolished the protective effects of TSA in CLP mice and decreased the number of M2 peritoneal macrophages. Therefore, TSA promotes the macrophage M2 phenotype by enhancing autophagy to reduce systemic inflammation and ultimately improves the survival of mice with polymicrobial sepsis.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Inflamação/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Inflamação/metabolismo , Ligadura/métodos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Punções/métodos , Células RAW 264.7 , Sepse/metabolismo
9.
Exp Ther Med ; 16(2): 1433-1441, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30116392

RESUMO

The current study aimed to investigate the changes and regulatory mechanism of cluster of differentiation (CD)4+CD25high forkhead box protein 3 (Foxp3+) regulatory T cells (Tregs) in childhood B-cell acute lymphocytic leukemia (B-ALL). A total of 18 children with B-ALL and 15 age-matched healthy children were included. Reverse-transcription quantitative polymerase chain reaction was used to evaluate the mRNA levels of Foxp3, cytotoxic T-lymphocyte associated protein 4 (CTLA4), glucocorticoid-induced tumor necrosis factor receptor (GITR), lymphocyte activation gene 3 (LAG3), interleukin (IL)-2 receptor (R)ß/γ, IL-6Rα/ß, mothers against decapentaplegic homolog (Smad)3/4 and runt-related transcription factor (RUNX)1/3 in CD4-positive cells. The concentration of cytokines in plasma were measured using a cytometric bead array. Additionally, the proportion of CD4+CD25highFoxp3+ Tregs and levels of associated proteins was analyzed using flow cytometry. The results demonstrated that the proportion of CD4+CD25highFoxp3+ and expression of Foxp3 in children with B-ALL was significantly higher compared with healthy controls (P<0.05) and that transcription levels of CTLA4, GITR and LAG3 were also significantly elevated (P<0.05). Compared with healthy controls, the expression of IL-2Rα/ß and its downstream molecule phosphorylated signal transducer and activator of transcription 5 (pSTAT5) in CD4-positive cells significantly increased (P<0.05); however, no significant difference of IL-2Rγ levels was identified between the two groups. Correlation analysis demonstrated a significant positive correlation between the expression of phosphorylated (p) signal transducer and activator of transcription factor (STAT)5 and CD4+CD25highFoxp3+ Tregs in children with B-ALL (r=0.17; P<0.05). The plasma concentration of TGF-ß, the expression of its receptor TGF-ßRI/II and downstream molecules Smad3/4 were significantly upregulated in children with B-ALL (P<0.05), whereas the expression of RUNX1/3 was lower compared with healthy controls (P<0.05). Furthermore, the expression of Smad3 and RUNX1 was positively correlated with CD4+CD25highFoxp3+ Tregs in children with B-ALL (r=0.87 and 0.60, respectively; P<0.05). Additionally, the expression of pSTAT3 in CD4-positive cells decreased significantly in pediatric patients with B-ALL when compared with healthy controls; however, plasma concentrations of IL-6 was significantly higher (P<0.05). Furthermore, a negative correlation was identified between pSTAT3 and CD4+CD25highFoxp3+ Tregs in pediatric patients with B-ALL (r=-0.39; P<0.05). However, no significant differences in IL-6Rα/ß expression were identified between the two groups. The results demonstrated that the excessive activation of IL-2/pSTAT5 and TGF-ß/Smad signaling, and insufficiency of pSTAT3 may be correlated with increased CD4+CD25highFoxp3+ Tregs in pediatric B-ALL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA