Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610339

RESUMO

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Assuntos
Antibacterianos , Ressonância de Plasmônio de Superfície , Enrofloxacina , Ciprofloxacina , Tecnologia de Fibra Óptica
2.
Water Res ; 243: 120420, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523925

RESUMO

Chloroform (CF) is a recalcitrant halogenated methane (HM) that has received widespread attention due to its frequent detection in groundwater and its potential carcinogenic risk. In this study, TEMPO-oxidized cellulose nanofiber-supported iron/copper bimetallic nanoparticles (TOCNF-Fe/Cu), a novel composite catalyst, was synthesized to activate sodium percarbonate (SPC) for the removal of CF from groundwater. The results showed that over 96.3% of CF could be removed in a neutral reaction medium (pH 6.5-9) within 180 min using 0.66 g L-1 of TOCNF (0.32)-Fe/Cu (1) and 1 mM of SPC, which outperforms typical advanced oxidation processes. The reaction mechanism of the TOCNF-Fe/Cu-SPC system for the CF removal was elucidated. As demonstrated through electron paramagnetic resonance and quenching experiments, the TOCNF-Fe/Cu-SPC system was found to include •OH and O2•-, where the latter played a dominant role in the CF removal. DFT calculations indicated that TOCNF improved the electron transport capability of Fe/Cu and reduced the transition state energy. The Fe species on the surface of TOCNF-Fe/Cu were identified as the primary active sites for SPC activation, whereas the Cu species were beneficial to the regeneration of the Fe species. Additionally, TOCNF-Fe/Cu was found to have good recyclability and stability. The feasibility of the TOCNF-Fe/Cu-SPC system was further confirmed by applying it for the efficient removal of composite HMs from actually contaminated groundwater. Overall, the TOCNF-Fe/Cu-SPC system is an attractive candidate for the treatment of HM-contaminated groundwater.


Assuntos
Água Subterrânea , Nanofibras , Poluentes Químicos da Água , Clorofórmio , Cobre , Compostos Ferrosos/química , Celulose , Poluentes Químicos da Água/química , Oxirredução , Água Subterrânea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA