Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.150
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7970): 624-631, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344596

RESUMO

Loss of the Y chromosome (LOY) is observed in multiple cancer types, including 10-40% of bladder cancers1-6, but its clinical and biological significance is unknown. Here, using genomic and transcriptomic studies, we report that LOY correlates with poor prognoses in patients with bladder cancer. We performed in-depth studies of naturally occurring LOY mutant bladder cancer cells as well as those with targeted deletion of Y chromosome by CRISPR-Cas9. Y-positive (Y+) and Y-negative (Y-) tumours grew similarly in vitro, whereas Y- tumours were more aggressive than Y+ tumours in immune-competent hosts in a T cell-dependent manner. High-dimensional flow cytometric analyses demonstrated that Y- tumours promote striking dysfunction or exhaustion of CD8+ T cells in the tumour microenvironment. These findings were validated using single-nuclei RNA sequencing and spatial proteomic evaluation of human bladder cancers. Of note, compared with Y+ tumours, Y- tumours exhibited an increased response to anti-PD-1 immune checkpoint blockade therapy in both mice and patients with cancer. Together, these results demonstrate that cancer cells with LOY mutations alter T cell function, promoting T cell exhaustion and sensitizing them to PD-1-targeted immunotherapy. This work provides insights into the basic biology of LOY mutation and potential biomarkers for improving cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Deleção Cromossômica , Cromossomos Humanos Y , Evasão Tumoral , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromossomos Humanos Y/genética , Proteômica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Perfilação da Expressão Gênica , Genômica , Prognóstico , Sistemas CRISPR-Cas , Edição de Genes , Técnicas In Vitro , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Imunoterapia
2.
Nature ; 592(7853): 296-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731931

RESUMO

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Medula Óssea/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , RNA-Seq , Análise de Célula Única
3.
Proc Natl Acad Sci U S A ; 121(21): e2313797121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709948

RESUMO

During 2010 to 2020, Northeast Pacific (NEP) sea surface temperature (SST) experienced the warmest decade ever recorded, manifested in several extreme marine heatwaves, referred to as "warm blob" events, which severely affect marine ecosystems and extreme weather along the west coast of North America. While year-to-year internal climate variability has been suggested as a cause of individual events, the causes of the continuous dramatic NEP SST warming remain elusive. Here, we show that other than the greenhouse gas (GHG) forcing, rapid aerosol abatement in China over the period likely plays an important role. Anomalous tropospheric warming induced by declining aerosols in China generated atmospheric teleconnections from East Asia to the NEP, featuring an intensified and southward-shifted Aleutian Low. The associated atmospheric circulation anomaly weakens the climatological westerlies in the NEP and warms the SST there by suppressing the evaporative cooling. The aerosol-induced mean warming of the NEP SST, along with internal climate variability and the GHG-induced warming, made the warm blob events more frequent and intense during 2010 to 2020. As anthropogenic aerosol emissions continue to decrease, there is likely to be an increase in NEP warm blob events, disproportionately large beyond the direct radiative effects.

4.
Blood ; 143(15): 1539-1550, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38142422

RESUMO

ABSTRACT: JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.


Assuntos
Hematopoiese Clonal , Trombose , Animais , Humanos , Camundongos , Aspirina/farmacologia , Aspirina/uso terapêutico , Plaquetas/metabolismo , Camundongos Knockout , Ativação Plaquetária , Trombose/genética , Trombose/metabolismo
5.
Cell ; 146(1): 164-76, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729787

RESUMO

The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.


Assuntos
Encéfalo/embriologia , Colágeno Tipo IV/metabolismo , Teto do Mesencéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(43): e2311131120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844228

RESUMO

Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.


Assuntos
Receptores Acoplados a Proteínas G , Peixe-Zebra , Animais , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Opsinas , Opsinas de Bastonetes , Neurônios , Cílios/fisiologia
7.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626371

RESUMO

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Assuntos
Cobre , Síndrome dos Cabelos Torcidos , Camundongos , Animais , ATPases Transportadoras de Cobre , Cobre/metabolismo , Plexo Corióideo/metabolismo , Síndrome dos Cabelos Torcidos/metabolismo , Encéfalo/metabolismo
8.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

9.
PLoS Pathog ; 19(8): e1011594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611054

RESUMO

Treponema pallidum (Tp) has a well-known ability to evade the immune system and can cause neurosyphilis by invading the central nervous system (CNS). Microglia are resident macrophages of the CNS that are essential for host defense against pathogens, this study aims to investigate the interaction between Tp and microglia and the potential mechanism. Here, we found that Tp can exert significant toxic effects on microglia in vivo in Tg (mpeg1: EGFP) transgenic zebrafish embryos. Single-cell RNA sequencing results showed that Tp downregulated autophagy-related genes in human HMC3 microglial cells, which is negatively associated with apoptotic gene expression. Biochemical and cell biology assays further established that Tp inhibits microglial autophagy by interfering with the autophagosome-lysosome fusion process. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis, Tp activates the mechanistic target of rapamycin complex 1 (mTORC1) signaling to inhibit the nuclear translocation of TFEB, leading to decreased lysosomal biogenesis and accumulated autophagosome. Importantly, the inhibition of autophagosome formation reversed Tp-induced apoptosis and promoted microglial clearance of Tp. Taken together, these findings show that Tp blocks autophagic flux by inhibiting TFEB-mediated lysosomal biosynthesis in human microglia. Autophagosome accumulation was demonstrated to be a key mechanism underlying the effects of Tp in promoting apoptosis and preventing itself from clearing by human microglia. This study offers novel perspectives on the potential mechanism of immune evasion employed by Tp within CNS. The results not only establish the pivotal role of autophagy dysregulation in the detrimental effects of Tp on microglial cells but also bear considerable implications for the development of therapeutic strategies against Tp, specifically involving mTORC1 inhibitors and autophagosome formation inhibitors, in the context of neurosyphilis patients.


Assuntos
Microglia , Neurossífilis , Humanos , Animais , Treponema pallidum/genética , Peixe-Zebra , Autofagia , Apoptose
10.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153253

RESUMO

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Assuntos
Osteoartrite , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Humanos , Ratos , Necroptose , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Osteoblastos/metabolismo , Osteoblastos/patologia , Células-Tronco/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia
11.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597993

RESUMO

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Assuntos
Adenosina , Metiltransferases , Adenosina/metabolismo , Metiltransferases/genética , Homeostase
13.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38031362

RESUMO

Fractal patterns have been shown to change in resting- and task-state blood oxygen level-dependent signals in bipolar disorder patients. However, fractal characteristics of brain blood oxygen level-dependent signals when responding to external emotional stimuli in pediatric bipolar disorder remain unclear. Blood oxygen level-dependent signals of 20 PBD-I patients and 17 age- and sex-matched healthy controls were extracted while performing an emotional Go-Nogo task. Neural responses relevant to the task and Hurst exponent of the blood oxygen level-dependent signals were assessed. Correlations between clinical indices and Hurst exponent were estimated. Significantly increased activations were found in regions covering the frontal lobe, parietal lobe, temporal lobe, insula, and subcortical nuclei in PBD-I patients compared to healthy controls in contrast of emotional versus neutral distractors. PBD-I patients exhibited higher Hurst exponent in regions that involved in action control, such as superior frontal gyrus, inferior frontal gyrus, inferior temporal gyrus, and insula, with Hurst exponent of frontal orbital gyrus correlated with onset age. The present study exhibited overactivation, increased self-similarity and decreased complexity in cortical regions during emotional Go-Nogo task in patients relative to healthy controls, which provides evidence of an altered emotional modulation of cognitive control in pediatric bipolar disorder patients. Hurst exponent may be a fractal biomarker of neural activity in pediatric bipolar disorder.


Assuntos
Transtorno Bipolar , Humanos , Criança , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/psicologia , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Lobo Frontal , Córtex Pré-Frontal , Mapeamento Encefálico , Imageamento por Ressonância Magnética
14.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238903

RESUMO

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Assuntos
Cálcio , Magnésio , Cálcio/metabolismo , Magnésio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Transporte de Íons , RNA/análise , Túbulos Renais Distais/metabolismo
15.
Gut ; 73(7): 1142-1155, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38553043

RESUMO

OBJECTIVE: Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN: A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS: The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION: One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Animais , Camundongos , Terapia Genética/métodos , Dependovirus/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Pancreatite Crônica/genética , Pancreatite Crônica/terapia , Masculino , Pancreatite/terapia , Pancreatite/prevenção & controle , Pancreatite/genética
16.
J Neurosci ; 43(49): 8547-8561, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802656

RESUMO

Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.


Assuntos
Hipersensibilidade , Neuralgia , Ratos , Masculino , Camundongos , Animais , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipersensibilidade/metabolismo
17.
J Lipid Res ; 65(4): 100534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522750

RESUMO

The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.


Assuntos
Aterosclerose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Colesterol , Retículo Endoplasmático , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Colesterol/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Endoplasmático/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Transporte Biológico , Camundongos Knockout
18.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
19.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795044

RESUMO

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

20.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265705

RESUMO

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA