Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252411

RESUMO

STK19 was originally identified as a manganese-dependent serine/threonine-specific protein kinase, but its function has been highly debated. Here, the crystal structure of STK19 revealed that it does not contain a kinase domain, but three intimately packed winged helix (WH) domains. The third WH domain mediated homodimerization and double-stranded DNA binding, both being important for its nuclear localization. STK19 participated in the nucleotide excision repair (NER) and mismatch repair (MMR) pathways by recruiting damage repair factors such as RPA2 and PCNA. STK19 also bound double-stranded RNA through the DNA-binding interface and regulated the expression levels of many mRNAs. Furthermore, STK19 knockdown cells exhibited very slow cell proliferation, which cannot be rescued by dimerization or DNA-binding mutants. Therefore, this work concludes that STK19 is highly unlikely to be a kinase but a DNA/RNA-binding protein critical for DNA damage repair (DDR) and cell proliferation. To prevent further confusions, we renamed this protein as TWH19 (Tandem Winged Helix protein formerly known as STK19).


Assuntos
Proliferação de Células , Reparo do DNA , Proteínas Nucleares , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Dano ao DNA , Fosforilação , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
2.
Cell Rep ; 43(8): 114529, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39046876

RESUMO

Neuronal activation is required for the formation of drug-associated memory, which is critical for the development, persistence, and relapse of drug addiction. Nevertheless, the metabolic mechanisms underlying energy production for neuronal activation remain poorly understood. In the study, a large-scale proteomics analysis of lysine crotonylation (Kcr), a type of protein posttranslational modification (PTM), reveals that cocaine promoted protein Kcr in the hippocampal dorsal dentate gyrus (dDG). We find that Kcr is predominantly discovered in a few enzymes critical for mitochondrial energy metabolism; in particular, pyruvate dehydrogenase (PDH) complex E1 subunit α (PDHA1) is crotonylated at the lysine 39 (K39) residue through P300 catalysis. Crotonylated PDHA1 promotes pyruvate metabolism by activating PDH to increase ATP production, thus providing energy for hippocampal neuronal activation and promoting cocaine-associated memory recall. Our findings identify Kcr of PDHA1 as a PTM that promotes pyruvate metabolism to enhance neuronal activity for cocaine-associated memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA