Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 615(7950): 158-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634707

RESUMO

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STAT
2.
BMC Immunol ; 25(1): 2, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172683

RESUMO

BACKGROUND: Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS: The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS: Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS: Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.


Assuntos
Schistosoma japonicum , Animais , Camundongos , Schistosoma japonicum/metabolismo , Receptor 3 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Imunoglobulina G , Imunoglobulina M
3.
Am J Nephrol ; 55(3): 334-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228096

RESUMO

INTRODUCTION: Renal fibrosis (RF), being the most important pathological change in the progression of CKD, is currently assessed by the evaluation of a biopsy. This present study aimed to apply a novel functional MRI (fMRI) protocol named amide proton transfer (APT) weighting to evaluate RF noninvasively. METHODS: Male Sprague-Dawley (SD) rats were initially subjected to bilateral kidney ischemia/reperfusion injury (IRI), unilateral ureteral obstruction, and sham operation, respectively. All rats underwent APT mapping on the 7th and 14th days after operation. Besides, 26 patients underwent renal biopsy at the Nephrology Department of Shanghai Tongji Hospital between July 2022 and May 2023. Patients underwent APT and apparent diffusion coefficient (ADC) mappings within 1 week before biopsy. MRI results of both patients and rats were calculated by comparing with gold standard histology for fibrosis assessment. RESULTS: In animal models, the cortical APT (cAPT) and medullary APT (mAPT) values were positively correlated with the degree of RF. Compared to the sham group, IRI group showed significantly increased cAPT and mAPT values on the 7th and 14th days after surgery, but no group differences were found in ADC values. Similar results were found in human patients. Cortical/medullary APT values were significantly increased in patients with moderate-to-severe fibrosis than in patients with mild fibrosis. ROC curve analysis indicated that APT value displayed a better diagnostic value for RF. Furthermore, combination of cADC and cAPT improved fibrosis detection by imaging variables alone (p < 0.1). CONCLUSION: APT values had better diagnostic capability at early stage of RF compared to ADC values, and the addition of APT imaging to conventional ADC will significantly improve the diagnostic performance for predicting kidney fibrosis.


Assuntos
Fibrose , Rim , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Masculino , Animais , Fibrose/diagnóstico por imagem , Humanos , Ratos , Pessoa de Meia-Idade , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Feminino , Adulto , Amidas , Prótons , Nefropatias/diagnóstico por imagem , Nefropatias/patologia , Nefropatias/diagnóstico , Idoso , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia , Obstrução Ureteral/diagnóstico por imagem , Modelos Animais de Doenças
4.
Acta Pharmacol Sin ; 45(1): 125-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684381

RESUMO

Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.


Assuntos
Injúria Renal Aguda , Citocromos c , Camundongos , Animais , Citocromos c/metabolismo , Fosfoglicerato Mutase/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Proteínas de Transporte/metabolismo , Fosfoproteínas Fosfatases/metabolismo
5.
Acta Pharmacol Sin ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147900

RESUMO

The pyroptosis of renal tubular epithelial cells leads to tubular loss and inflammation and then promotes renal fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) can bidirectionally regulate the transcription of target genes. Our previous study revealed that sustained elevation of KLF4 is responsible for the transition of acute kidney injury (AKI) into chronic kidney disease (CKD) and renal fibrosis. In this study, we explored the upstream mechanisms of renal tubular epithelial cell pyroptosis from the perspective of posttranslational regulation and focused on the transcription factor KLF4. Mice were subjected to unilateral ureteral obstruction (UUO) surgery and euthanized on D7 or D14 for renal tissue harvesting. We showed that the pyroptosis of renal tubular epithelial cells mediated by both the Caspase-1/GSDMD and Caspase-3/GSDME pathways was time-dependently increased in UUO mouse kidneys. Furthermore, we found that the expression of the transcription factor KLF4 was also upregulated in a time-dependent manner in UUO mouse kidneys. Tubular epithelial cell-specific Klf4 knockout alleviated UUO-induced pyroptosis and renal fibrosis. In Ang II-treated mouse renal proximal tubular epithelial cells (MTECs), we demonstrated that KLF4 bound to the promoter regions of Caspase-3 and Caspase-1 and directly increased their transcription. In addition, we found that ubiquitin-specific protease 11 (USP11) was increased in UUO mouse kidneys. USP11 deubiquitinated KLF4. Knockout of Usp11 or pretreatment with the USP11 inhibitor mitoxantrone (3 mg/kg, i.p., twice a week for two weeks before UUO surgery) significantly alleviated the increases in KLF4 expression, pyroptosis and renal fibrosis. These results demonstrated that the increased expression of USP11 in renal tubular cells prevents the ubiquitin degradation of KLF4 and that elevated KLF4 promotes inflammation and renal fibrosis by initiating tubular cell pyroptosis.

6.
Cell Mol Biol Lett ; 29(1): 38, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491448

RESUMO

Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.


Assuntos
Nefropatias , Toxinas Biológicas , Humanos , Toxinas Urêmicas , Indicã/toxicidade , Indicã/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Toxinas Biológicas/toxicidade
7.
Kidney Int ; 103(1): 115-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089186

RESUMO

Acute kidney injury (AKI) is a worldwide public health problem characterized by excessive inflammation with no specific therapy in clinic. Inflammation is not only a feature of AKI but also an essential promoter for kidney deterioration. Phosphoglycerate mutase 5 (PGAM5) was up-regulated and positively correlated with kidney dysfunction in human biopsy samples and mouse kidneys with AKI. PGAM5 knockout in mice significantly alleviated ischemia/reperfusion-induced kidney injury, mitochondrial abnormality and production of inflammatory cytokines. Elevated PGAM5 was found to be mainly located in kidney tubular epithelial cells and was also related to inflammatory response. Knockdown of PGAM5 inhibited the hypoxia/reoxygenation-induced cytosolic release of mitochondrial DNA (mtDNA) and binding of mtDNA with the cellular DNA receptor cGAS in cultured cells. cGAS deficiency also attenuated the inflammation and kidney injury in AKI. Mechanistically, as a protein phosphatase, PGAM5 was able to dephosphorylate the pro-apoptotic protein Bax and facilitate its translocation to mitochondrial membranes, and then initiate increased mitochondrial membrane permeability and release of mtDNA. Leaked mtDNA recognized by cGAS then initiated its downstream-coupled STING pathway, a component of the innate immune system that functions to detect the presence of cytosolic DNA. Thus, our results demonstrated mtDNA release induced by PGAM5-mediated Bax dephosphorylation and the activation of cGAS-STING pathway as critical determinants of inflammation and kidney injury. Hence, targeting this axis may be useful for treating AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Proteínas Reguladoras de Apoptose , Fosfoglicerato Mutase/genética , Proteína X Associada a bcl-2 , Injúria Renal Aguda/patologia , Inflamação , Traumatismo por Reperfusão/patologia , Nucleotidiltransferases/metabolismo
8.
Org Biomol Chem ; 21(42): 8573-8578, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853805

RESUMO

A highly effective strategy for the synthesis of meta-arylphenol derivatives through the selective rearrangement of 4-alkyl-4-aryl-2,5-cyclohexadienones under metal-free conditions was developed, in which acid-promoted [1,2]-migration of the aryl group at C-4 occurred exclusively when the alkyl group at C-4 was a methyl group. Treatment of 4-methyl-4-aryl-2,5-cyclohexadienones with 37% HCl in Ac2O at room temperature provided polysubstituted meta-arylphenyl acetates in 75-94% yields. The application of this protocol in the synthesis of polycyclic aromatic compounds was also described.

9.
Headache ; 63(1): 62-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651491

RESUMO

OBJECTIVE: The aims were to explore the prevalence and clinical features of fibromyalgia in Chinese hospital patients with primary headache. BACKGROUND: Studies done in non-Chinese populations suggest that around one-third of patients with primary headache have fibromyalgia, but data from mainland China are limited. Investigations into the prevalence and clinical features of fibromyalgia in Chinese patients with primary headache would improve our understanding of these two complex disease areas and help guide future clinical practice. METHODS: This cross-sectional study included adults with primary headache treated at 23 Chinese hospitals from September 2020 to May 2021. Fibromyalgia was diagnosed using the modified 2010 American College of Rheumatology criteria. Mood and insomnia were evaluated employing the Hospital Anxiety and Depression Scale and the Insomnia Severity Index. RESULTS: A total of 2782 participants were analyzed. The fibromyalgia prevalence was 6.0% (166/2782; 95% confidence interval: 5.1%, 6.8%). Compared to primary headache patients without combined fibromyalgia, patients with primary headache combined with fibromyalgia were more likely to be older (47.8 vs. 41.7 years), women (83.7% [139/166] vs. 72.8% [1904/2616]), less educated (65.1% [108/166] vs. 45.2% [1183/2616]), and with longer-duration headache (10.0 vs. 8.0 years). Such patients were more likely to exhibit comorbid depression (34.3% [57/166] vs. 9.9% [260/2616]), anxiety (16.3% [27/166] vs. 2.7% [70/2612]), and insomnia (58.4% [97/166] vs. 17.1% [447/2616]). Fibromyalgia was more prevalent in those with chronic (rather than episodic) migraine (11.1% [46/414] vs. 4.4% [72/1653], p < 0.001) and chronic (rather than episodic) tension-type headache (11.5% [27/235] vs. 4.6% [19/409], p = 0.001). Most fibromyalgia pain was in the shoulders, neck, and upper back. CONCLUSIONS: The prevalence of fibromyalgia in mainland Chinese patients with primary headache was 6.0%. Fibromyalgia was more common in those with chronic rather than episodic headache. The most common sites of fibromyalgia pain were the neck, shoulders, and back.


Assuntos
Fibromialgia , Transtornos de Enxaqueca , Distúrbios do Início e da Manutenção do Sono , Adulto , Humanos , Feminino , Fibromialgia/epidemiologia , Prevalência , Estudos Transversais , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Cefaleia/epidemiologia , Comorbidade , Transtornos de Enxaqueca/epidemiologia
10.
Acta Pharmacol Sin ; 44(3): 584-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36045219

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is regarded as a key factor in promoting renal fibrosis during chronic kidney disease (CKD). Signaling transduction of TGF-ß1 starts with binding to TGF-ß type II receptor (Tgfbr2), a constitutively activated kinase that phosphorylates TGF-ß type I receptor (Tgfbr1), and then activates downstream Smad2/3 or noncanonical pathways. Previous studies show that cellular senescence is associated with the progression of CKD, and accelerated tubular cell senescence is implicated in promoting renal fibrosis. In the present study we investigated the renal parenchymal cell senescence in fibrosis from the sight of posttranslational regulation and focused on Tgfbr2, the important gatekeeper for TGF-ß1 downstream signaling. In mice with unilateral ureteral obstruction (UUO) and folic acid (FA)-induced fibrotic kidneys, we found that Tgfbr2 was markedly elevated without obvious change in its mRNA levels. As an important member of deubiquitinating enzymes, ubiquitin-specific protease 11 (Usp11) was also significantly increased in fibrotic kidneys, and co-distributed with Tgfbr2 in tubular epithelial cells. Pretreatment with Usp11 inhibitor mitoxantrone (MTX, 30 mg · kg-1 · d-1, i.p.) twice a week, for 2 weeks significantly attenuated the elevation of Tgfbr2, activation in downstream senescence-related signaling pathway, as well as renal senescence and fibrosis. In cultured mouse tubular epithelial cells (MTECs), treatment with angiotensin II (Ang-II, 10-7, 10-6 M) dose-dependently elevated both Tgfbr2 and Usp11 levels. Inhibition or knockdown on Usp11 attenuated Ang-II-induced elevation in Tgfbr2 level, and attenuated the activation of downstream senescent-related signaling pathway and as well as cell senescence. We conducted Co-IP experiments, which revealed that Usp11 was able to interact with Tgfbr2, and inhibition of Usp11 increased the ubiquitination of Tgfbr2. Taken together, these results demonstrate that the elevation of Usp11 under pathological condition is implicated in promoting renal fibrosis. Usp11 promotes the development of renal fibrosis by deubiquitinating Tgfbr2, reducing Tgfbr2 ubiquitination degradation, and then facilitating the activation of downstream senescent signaling pathway.


Assuntos
Senescência Celular , Enzimas Desubiquitinantes , Insuficiência Renal Crônica , Animais , Camundongos , Senescência Celular/fisiologia , Enzimas Desubiquitinantes/metabolismo , Células Epiteliais/metabolismo , Fibrose/metabolismo , Rim/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina/metabolismo , Obstrução Ureteral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA