Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
PLoS Pathog ; 19(3): e1011238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961862

RESUMO

A major threat to rice production is the disease epidemics caused by insect-borne viruses that emerge and re-emerge with undefined origins. It is well known that some human viruses have zoonotic origins from wild animals. However, it remains unknown whether native plants host uncharacterized endemic viruses with spillover potential to rice (Oryza sativa) as emerging pathogens. Here, we discovered rice tiller inhibition virus (RTIV), a novel RNA virus species, from colonies of Asian wild rice (O. rufipogon) in a genetic reserve by metagenomic sequencing. We identified the specific aphid vector that is able to transmit RTIV and found that RTIV would cause low-tillering disease in rice cultivar after transmission. We further demonstrated that an infectious molecular clone of RTIV initiated systemic infection and causes low-tillering disease in an elite rice variety after Agrobacterium-mediated inoculation or stable plant transformation, and RTIV can also be transmitted from transgenic rice plant through its aphid vector to cause disease. Finally, global transcriptome analysis indicated that RTIV may disturb defense and tillering pathway to cause low tillering disease in rice cultivar. Thus, our results show that new rice viral pathogens can emerge from native habitats, and RTIV, a rare aphid-transmitted rice viral pathogen from native wild rice, can threaten the production of rice cultivar after spillover.


Assuntos
Afídeos , Oryza , Vírus , Animais , Humanos , Oryza/genética , Afídeos/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Vírus/genética , Doenças das Plantas
2.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648290

RESUMO

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Assuntos
Álcool Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/crescimento & desenvolvimento , Replicação Viral/fisiologia , Trifosfato de Adenosina/biossíntese , Fermentação/fisiologia , Glicólise/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NAD/metabolismo , RNA Viral/biossíntese , Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Replicação Viral/genética
3.
J Biol Chem ; 294(38): 13973-13982, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362985

RESUMO

Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.


Assuntos
Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bromovirus/metabolismo , Retículo Endoplasmático/metabolismo , Engenharia Genética/métodos , Fosfatidilcolinas/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , RNA Viral/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/genética
4.
PLoS Pathog ; 14(4): e1006988, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649282

RESUMO

Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection.


Assuntos
Bromovirus/fisiologia , Nicotiana/virologia , Membrana Nuclear/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/virologia , Replicação Viral , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma Viral , Fosfatidato Fosfatase/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/metabolismo
5.
PLoS Pathog ; 13(10): e1006662, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28977024

RESUMO

MicroRNAs (miRNAs) are small regulatory RNAs processed from primary miRNA transcripts, and plant miRNAs play important roles in plant growth, development, and response to infection by microbes. Microbial infections broadly alter miRNA biogenesis, but the underlying mechanisms remain poorly understood. In this study, we report that the Rice stripe virus (RSV)-encoded nonstructural protein 3 (NS3) interacts with OsDRB1, an indispensable component of the rice (Oryza sativa) miRNA-processing complex. Moreover, the NS3-OsDRB1 interaction occurs at the sites required for OsDRB1 self-interaction, which is essential for miRNA biogenesis. Further analysis revealed that NS3 acts as a scaffold between OsDRB1 and pri-miRNAs to regulate their association and aids in vivo processing of pri-miRNAs. Genetic evidence in Arabidopsis showed that NS3 can partially substitute for the function of double-stranded RNA binding domain (dsRBD) of AtDRB1/AtHYL1 during miRNA biogenesis. As a result, NS3 induces the accumulation of several miRNAs, most of which target pivotal genes associated with development or pathogen resistance. In contrast, a mutant version of NS3 (mNS3), which still associated with OsDRB1 but has defects in pri-miRNA binding, reduces accumulation of these miRNAs. Transgenic rice lines expressing NS3 exhibited significantly higher susceptibility to RSV infection compared with non-transgenic wild-type plants, whereas the transgenic lines expressing mNS3 showed a less-sensitive response. Our findings revealed a previously unknown mechanism in which a viral protein hijacks OsDRB1, a key component of the processing complex, for miRNA biogenesis and enhances viral infection and pathogenesis in rice.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Oryza/virologia , Proteínas de Ligação a RNA/metabolismo , Tenuivirus/genética , Proteínas Virais/metabolismo , Oryza/genética , Interferência de RNA/fisiologia , Proteínas de Ligação a RNA/genética
6.
Can J Infect Dis Med Microbiol ; 2018: 3217473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808104

RESUMO

The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria.

7.
Arch Virol ; 162(2): 505-510, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743256

RESUMO

We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.


Assuntos
Bambusa/virologia , Genes de Plantas , Potexvirus/genética , RNA Satélite/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/isolamento & purificação , Interferência de RNA
8.
Arch Virol ; 162(5): 1335-1339, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28050737

RESUMO

Bamboo mosaic virus (BaMV) is a well-characterized virus and a model of virus-host interaction in plants. Here, we identified naturally occurring BaMV isolates from Fujian Province, China and furthermore describe a naturally occurring BaMV coinfection in bamboo (Bambusa xiashanensis) plants. Two different types of BaMV were identified, represented by isolates BaMV-XSNZHA7 (X7) and BaMV-XSNZHA10 (X10). The phylogenetic relationships between X7- and X10-like isolates and published BaMV isolates were determined based on genomic RNA and amino acid sequences. Three clusters were identified, indicating that BaMV is highly diverse. The in planta viral replication kinetics were determined for X7 and X10 in single infections and in an X7/X10 coinfection. The peak viral load during coinfection was significantly greater than that during single infection with either virus and contained a slightly higher proportion of X10 virus than X7, suggesting that X10-like viruses may have a fitness advantage when compared to X7-like viruses.


Assuntos
Bambusa/virologia , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/genética , RNA Viral/genética , Sequência de Aminoácidos/genética , Sequência de Bases , China , Coinfecção/virologia , Interações Hospedeiro-Patógeno , Filogenia , Potexvirus/isolamento & purificação , Análise de Sequência de RNA , Carga Viral
9.
Arch Virol ; 161(4): 1091-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923929

RESUMO

The complete genome sequences of three isolates of bamboo mosaic virus (BaMV) from mainland China were determined and compared to those of BaMV isolates from Taiwan. Sequence analysis showed that isolate BaMV-JXYBZ1 from Fuzhou shares 98 % nucleotide sequence identity with BaMV-YTHSL14 from nucleotides 2586 to 6306, and more than 94 % nucleotide sequence identity with BaMV-MUZHUBZ2 in other regions. Recombination and phylogenetic analyses indicate that BaMV-JXYBZ1 is a recombinant with one recombination breakpoint. To our knowledge, this is the first report of a BaMV recombinant worldwide.


Assuntos
Doenças das Plantas/virologia , Poaceae/virologia , Potexvirus/genética , Vírus Reordenados , Bambusa/virologia , China , Filogenia , Potexvirus/isolamento & purificação
10.
J Integr Plant Biol ; 58(5): 452-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26178804

RESUMO

Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendrogram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.


Assuntos
Arachis/genética , Cruzamento , Variação Genética , Repetições de Microssatélites/genética , China , Análise por Conglomerados , Análise Fatorial , Marcadores Genéticos , Genética Populacional , Índia , Filogenia , Polimorfismo Genético , Análise de Componente Principal , Estados Unidos
11.
J Gen Virol ; 96(Pt 4): 933-938, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502650

RESUMO

Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if the insect species are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Rice dwarf virus (RDV), a plant reovirus, is transmitted mainly by the leafhopper species Nephotettix cincticeps but is transmitted ineffectively by the leafhopper Recilia dorsalis. Here, we demonstrated that virus-containing tubules composed of viral non-structural protein Pns10 of RDV associated with the intestinal microvilli of N. cincticeps but not with those of R. dorsalis. Furthermore, Pns10 of RDV specifically interacted with cytoplasmic actin, the main component of microvilli of N. cincticeps, but not with that of R. dorsalis, suggesting that the interaction of Pns10 with insect cytoplasmic actin is consistent with the transmissibility of RDV by leafhoppers. All these results suggested that the interaction of Pns10 of RDV with insect cytoplasmic actin may determine pathogen-vector specificity.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Hemípteros/metabolismo , Insetos Vetores/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo
12.
J Virol ; 88(18): 10488-500, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965461

RESUMO

UNLABELLED: The plant reoviruses, plant rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent propagative manner. These viruses induce the formation of viral inclusions to facilitate viral propagation in insect vectors. The intestines of insect vectors are formed by epithelial cells that lie on the noncellular basal lamina surrounded by visceral muscle tissue. Here, we demonstrate that a recently identified plant reovirus, southern rice black-streaked dwarf virus (SRBSDV), exploits virus-containing tubules composed of virus-encoded nonstructural protein P7-1 to directly cross the basal lamina from the initially infected epithelium toward visceral muscle tissues in the intestine of its vector, the white-backed planthopper (Sogatella furcifera). Furthermore, such tubules spread along visceral muscle tissues through a direct interaction of P7-1 and actin. The destruction of tubule assembly by RNA interference with synthesized double-stranded RNA targeting the P7-1 gene inhibited viral spread in the insect vector in vitro and in vivo. All these results show for the first time that a virus employs virus-induced tubule as a vehicle for viral spread from the initially infected midgut epithelium through the basal lamina, facilitating the rapid dissemination of virus from the intestine of the insect vector. IMPORTANCE: Numerous plant viruses are transmitted in a persistent manner by sap-sucking insects, including thrips, aphids, planthoppers, and leafhoppers. These viruses, ingested by the insects, establish their primary infection in the intestinal epithelium of the insect vector. Subsequently, the invading virus manages to transverse the basal lamina, a noncellular layer lining the intestine, a barrier that may theoretically hinder viral spread. The mechanism by which plant viruses cross the basal lamina is unknown. Here, we report that a plant virus has evolved to exploit virus-induced tubules to pass through the basal lamina from the initially infected midgut epithelium of the insect vector, thus revealing the previously undescribed pathway adapted by the virus for rapid dissemination of virions from the intestine of the insect vector.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Oryza/virologia , Doenças das Plantas/virologia , Reoviridae/fisiologia , Vírion/fisiologia , Animais , Membrana Basal/virologia , Sistema Digestório/virologia , Epitélio/virologia , Corpos de Inclusão Viral/metabolismo , Reoviridae/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Replicação Viral
13.
Virol J ; 12: 211, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26646953

RESUMO

BACKGROUND: Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet. METHODS: RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays. RESULTS: In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector. CONCLUSIONS: Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Reoviridae/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Reoviridae/genética , Proteínas não Estruturais Virais/genética
14.
Arch Virol ; 160(8): 2135-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077515

RESUMO

The genome sequence of a novel geminivirus from mulberry samples exhibiting crinkle leaf symptoms is reported. The sequence consisted of 2952 nt, containing four open reading frames (ORFs) in the viral-sense strand and two ORFs in the complementary-sense strand. The size of the genome and the conserved origin of replication are similar to those of members of the family Geminiviridae, but the genomic organization, number of ORFs, and especially five contiguous GAAAAA repeats positioned upstream of ORF1 distinguish it from other geminiviruses. Phylogenetic analysis coupled with ORF analysis suggests that this is a novel virus that does not fit into the established seven genera of the family Geminiviridae. The virus, found in Zhenjiang, Jiangsu province, China, is tentatively named mulberry crinkle leaf virus isolate Jiangsu (MCLV-js).


Assuntos
Geminiviridae/genética , Geminiviridae/isolamento & purificação , Genoma Viral , Morus/virologia , Doenças das Plantas/virologia , Sequência de Bases , China , Geminiviridae/classificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Folhas de Planta/virologia
15.
Arch Virol ; 160(3): 851-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25577167

RESUMO

An isometric virus was identified in mulberry leaves showing symptoms of mulberry mosaic leaf roll (MMLR) disease. Its genome consists of two (+)ssRNAs. RNA1 and RNA2 have 7183 and 3742 nucleotides, excluding the 3'-terminal poly(A) tail. Based on phylogenetic analysis of the RNA1-encoded polyprotein and CP amino acid sequences, the properties of the the 3'-UTR of RNA1 and RNA2, and <75 % identity in the CP amino acid sequence, this virus is proposed to be a new member of the genus Nepovirus, subgroup A. Since a causal relationship between this virus and MMLR has not been established, it is tentatively referred to as MMLR-associated virus.


Assuntos
Genoma Viral , Morus/virologia , Nepovirus/classificação , Nepovirus/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA , Regiões 3' não Traduzidas , China , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Homologia de Sequência , Proteínas Virais/genética
16.
PLoS Pathog ; 8(11): e1003032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166500

RESUMO

Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi) induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.


Assuntos
Vetores Artrópodes/virologia , Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Vetores Artrópodes/genética , Vetores Artrópodes/metabolismo , Linhagem Celular , Insetos , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Vírus de Plantas/ultraestrutura , Proteínas não Estruturais Virais/genética
17.
Virol J ; 11: 81, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24885215

RESUMO

BACKGROUND: Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which limits rice production in many areas of south East Asia. Transcriptional changes of rice in response to RDV infection have been characterized by Shimizu et al. and Satoh et al.. Both studies found induction of defense related genes and correlations between transcriptional changes and symptom development in RDV-infected rice. However, the same rice cultivar, namely Nipponbare belonging to the Japonic subspecies of rice was used in both studies. METHODS: Gene expression changes of the indica subspecies of rice, namely Oryza sativa L. ssp. indica cv Yixiang2292 that show moderate resistance to RDV, in response to RDV infection were characterized using an Affymetrix Rice Genome Array. Differentially expressed genes (DEGs) were classified according to their Gene Ontology (GO) annotation. The effects of transient expression of Pns11 in Nicotiana benthaminana on the expression of nucleolar genes were studied using real-time PCR (RT-PCR). RESULTS: 856 genes involved in defense or other physiological processes were identified to be DEGs, most of which showed up-regulation. Ribosome- and nucleolus related genes were significantly enriched in the DEGs. Representative genes related to nucleolar function exhibited altered expression in N. benthaminana plants transiently expressing Pns11 of RDV. CONCLUSIONS: Induction of defense related genes is common for rice infected with RDV. There is a co-relation between symptom severity and transcriptional alteration in RDV infected rice. Besides ribosome, RDV may also target nucleolus to manipulate the translation machinery of rice. Given the tight links between nucleolus and ribosome, it is intriguing to speculate that RDV may enhance expression of ribosomal genes by targeting nucleolus through Pns11.


Assuntos
Nucléolo Celular/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Oryza/virologia , Doenças das Plantas/virologia , Reoviridae/fisiologia , Análise em Microsséries , Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reoviridae/imunologia
18.
Arch Virol ; 159(12): 3439-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091741

RESUMO

The complete sequence of GF_YL20, a potato virus Y (PVY) isolate from China, encodes a polyprotein of 3,061 amino acids. Sequence analysis indicates that GF_YL20 has a genomic structure different from previously reported PVY strains. It shares 99 % nucleotide sequence identity with PB209 (PVY(N:O)) except in VPg, but more than 97 % nucleotide sequence identity with the VPg of Mont (PVY(N)), PB312 (PVY(NTN)) and HN2 (SYR-I). Phylogenetic analysis indicates that GF_YL20 is a novel N:O recombinant with three recombination breakpoints.


Assuntos
Genoma Viral , Potyvirus/genética , RNA Viral/genética , Recombinação Genética , Análise de Sequência de DNA , China , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Poliproteínas/genética , Potyvirus/isolamento & purificação , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/genética
19.
J Virol ; 86(10): 5800-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398296

RESUMO

An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Genéticas , Hemípteros/virologia , Interferência de RNA , Reoviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas Genéticas/instrumentação , Oryza/virologia , Doenças das Plantas/virologia , Reoviridae/genética , Spodoptera , Proteínas Virais/genética
20.
Yi Chuan ; 35(9): 1125-34, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24400487

RESUMO

The objectives of this study were to understand the sequence variation and the putative protein structure of pipo gene in the Potato virus Y (PVY) collected from Solanum tuberosum. The pipo gene in PVY was cloned using a pair of degenerate primers designed from its conserved region and its sequences were used to re-construct phylogenetic tree in Potyvirus genera by a Bayesian inference method. An expected fragment of 235 bp was amplified in all 20 samples by RT-PCR and the pipo genes in the 20 samples assayed shared more than 92% nucleotide sequence similarity with the published sequences of PVY strains. Among the 20 pipo gene sequences, 13 polymorphic sites were detected, including 4 parsimony informative sites and 9 singleton variable sites. These results indicate that PVY pipo gene is highly conserved but some sequence variations exist. Further analyses suggest that the pipo gene encodes a hydrophilic protein without signal peptide and transmembrane region. The protein has theoretical isoelectric points (pI) ranging from 11.26 to 11.62 and contains three highly conserved regions, especially between aa 10 and 59. The protein is likely located in the mitochondria and has a-helix secondary structure. Bayesian inference of phylogenetic trees reveals that PVY isolates are clustered in the same branch with high posterior probability, while Sunflower chlorotic mottle virus (SoCMoV) and Pepper severe mosaic virus (PepSMV) are closely related, consisting with the classification of Potyvirus genera using other approaches. Our analyses suggest that the pipo gene can be a new marker for phylogenetic analysis of the genera. The results reported in this paper provide useful insights in the genetic variation and the evolution of PVY and can stimulate further research on structure and function of the PIPO protein.


Assuntos
Variação Genética , Potyvirus/genética , Potyvirus/isolamento & purificação , Solanum tuberosum/virologia , Proteínas Virais/química , Proteínas Virais/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/metabolismo , Transporte Proteico , Alinhamento de Sequência , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA