Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 935-942, 2018 12 25.
Artigo em Zh | MEDLINE | ID: mdl-30583320

RESUMO

The drug-target protein interaction prediction can be used for the discovery of new drug effects. Recent studies often focus on the prediction of an independent matrix filling algorithm, which apply a single algorithm to predict the drug-target protein interaction. The single-model matrix-filling algorithms have low accuracy, so it is difficult to obtain satisfactory results in the prediction of drug-target protein interaction. AdaBoost algorithm is a strong multiple classifier combination framework, which is proved by the past researches in classification applications. The drug-target interaction prediction is a matrix filling problem. Therefore, we need to adjust the matrix filling problem to a classification problem before predicting the interaction among drug-target protein. We make full use of the AdaBoost algorithm framework to integrate several weak classifiers to improve performance and make accurate prediction of drug-target protein interaction. Experimental results based on the metric datasets show that our algorithm outperforms the other state-of-the-art approaches and classical methods in accuracy. Our algorithm can overcome the limitations of the single algorithm based on machine learning method, exploit the hidden factors better and improve the accuracy of prediction effectively.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31180896

RESUMO

Survival analysis is a popular branch of statistics. At present, many algorithms (like traditional multi-tasking learning model) cannot be applied well in practice because of censored data. Although using some model (like parametric regression model) can avoid it, they need strict assumptions. This undermines the very nature of things, which is very detrimental to the study of practical problems. The method proposed in this paper can apply well to the censored data, but does not need to make any additional assumptions about the original problem. It can be said that it breaks through the above two kinds of major limitations. The algorithm is a kind of inductive transfer learning method, which can fully obtain the information in the censored data, using domain-specific information implicit in each feature to enhance the generalization capability of the model. We also used two common performance metrics as criteria to judge the predictive performance differences between the models in this article and those of other mainstream models. The results show that the model proposed in this paper is 10 ∼ 15 percent higher than other mainstream models, which proves that our multi-task learning model has a great advantage in the survival analysis of cancer genes.


Assuntos
Algoritmos , Aprendizado de Máquina , Neoplasias , Análise de Sobrevida , Biologia Computacional/métodos , Bases de Dados Factuais , Genes Neoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA