Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hum Genet ; 68(9): 625-634, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37161033

RESUMO

Chromosomal rearrangements mostly result from non-allelic homologous recombination mediated by low-copy repeats (LCRs) or segmental duplications (SDs). Recent studies on recombinant chromosome 18 (rec (18)) have focused on diagnoses and clinical phenotypes. We diagnosed two cases of prenatal rec (18) and identified precise breakpoint intervals using karyotype and chromosomal microarray analyses. We analyzed the distribution characteristics of breakpoint repetitive elements to infer rearrangement mechanisms and reviewed relevant literature to identify genetic trends. Among the 12 families with 25 pregnancies analyzed, 68% rec (18), 24% spontaneous abortions, and 8% normal births were reported. In the 17 rec (18) cases, 65% presented maternal origin and 35% were paternal. Short-arm breakpoints at p11.31 were reported in 10 cases, whereas the long-arm breakpoints were located at q21.3 (6 cases) and q12 (4 cases). Breakpoints of pericentric inversions on chromosome 18 are concentrated in p11.31, q21.3, and q12 regions. Rearrangements at 18p11.31 are non-recurrent events. ALUs, LINE1s, and MIRs were enriched at the breakpoint regions (1.85 to 3.42-fold enrichment over the entire chromosome 18), while SDs and LCRs were absent. ALU subfamilies had sequence identities of 85.94% and 83.01% between two pair breakpoints. Small repetitive elements may mediate recombination-coupled DNA repair processes, facilitating rearrangements on chromosome 18. Maternal inversion carriers are more prone to abnormal recombination in prenatal families with rec (18). Recombinant chromosomes may present preferential segregation during gamete formation.


Assuntos
Cromossomos Humanos Par 18 , Rearranjo Gênico , Humanos , Gravidez , Feminino , Cariotipagem , Inversão Cromossômica/genética
2.
Am J Perinatol ; 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336233

RESUMO

OBJECTIVE: The prenatal diagnosis of chromosomal mosaicism is fraught with uncertainty. Karyotyping, chromosomal microarray analysis (CMA), and fluorescence in situ hybridization (FISH) are three commonly used techniques. In this study, we evaluated these techniques for the prenatal diagnosis of chromosomal mosaicism and its clinical outcome. STUDY DESIGN: A retrospective review of mosaicism was conducted in 18,369 pregnant women from January 2016 to November 2021. The subjects underwent amniocentesis to obtain amniotic fluid for G-band karyotyping with or without CMA/FISH. Cases diagnosed with chromosomal mosaicism were selected for further analysis. RESULTS: In total, 101 cases of chromosomal mosaicism were detected in 100 pregnant women (0.54%, 100/18,369). Four were lost during follow-up, 61 opted to terminate their pregnancy, and 35 gave birth to a healthy singleton or twins. Among these 35 cases, postnatal cytogenetic testing was performed on eight and two exhibited mosaicism; however, nothing abnormal was observed in the postnatal phenotype follow-up. Karyotyping identified 96 incidents of chromosomal mosaicism including 13 with level II mosaicism and 83 with level III mosaicism, FISH identified 37 cases of mosaicism, and CMA identified 17. The most common form of chromosomal mosaicism involved monosomy X, of which the mosaic fraction in cultured karyotyping appeared higher or comparable to uncultured FISH/CMA (p < 0.05). Discordant mosaic results were observed in 34 of 101 cases (33.7%), most of which resulted from the detection limit of different techniques and/or the dominant growth of a certain cell line. CONCLUSION: Based on the postnatal follow-up results from the babies born, we obtained a more hopeful result for the prognosis of chromosomal mosaicism. Although karyotyping was the most sensitive method for detecting chromosomal mosaicism, artifacts and bias resulting from culture should be considered, particularly for sex chromosomal abnormalities involving X monosomy, in which the combination with uncultured FISH was necessary. KEY POINTS: · Karyotyping combined with uncultured FISH or CMA is beneficial for prenatal diagnosis of chromosomal mosaicism.. · Fetuses without ultrasound structural anomalies with chromosomal mosaicism often have optimistic prognosis..

3.
BMC Pregnancy Childbirth ; 22(1): 813, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333674

RESUMO

BACKGROUND: Down syndrome (DS) is the most common congenital cause of intellectual disability and also leads to numerous metabolic and structural problems. This study aims to explore the application value of chromosomal microarray analysis (CMA) and karyotyping in prenatal diagnosis for pregnant women with abnormal DS screening results. METHODS: The study recruited 1452 pregnant women with abnormal DS screening results including 493 with an enlarged nuchal translucency thickness (NT ≥ 2.5 mm) and 959 with an abnormal second-trimester maternal serum biomarker screening results. They underwent amniocentesis to obtain amniotic fluid for CMA and karyotyping. RESULTS: CMA identified 74/1452 abnormal results, which was more efficient than karyotyping (51/1452, P < 0.05.) CMA is equivalent to traditional karyotyping for identifying aneuploidies. Compared to karyotyping CMA identified 1.90% more copy number variants (CNVs) ranging from 159Kb to 6496Kb. However, 34.4% of them were recurrent pathogenic CNVs associated with risk of neurodevelopmental disorders. CMA identified 13 variants of uncertain significance (VUS) results and 1 maternal uniparental disomy (UPD) of chromosome 7. Karyotyping identified 3 mosaic sex chromosome aneuploidy and 4 balanced translocation which could not be identified by CMA. In enlarged NT group, karyotyping identified 80.9% abnormal results while in serum screening group karyotyping identified 35.7%. However, the incidence of pathogenic/likely pathogenic (P/LP) CNVs was nearly the same in both groups. That was because aneuploidies and gross duplication/deletion were previously screened out by NT scan. CONCLUSIONS: CMA and karyotyping have both advantages and disadvantages in prenatal diagnosis of pregnant women with abnormal DS screening results. However, there was not enough evidence to support routine CMA in pregnant women with abnormal DS screening results.


Assuntos
Transtornos Cromossômicos , Síndrome de Down , Feminino , Gravidez , Humanos , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Cariotipagem , Análise em Microsséries , Diagnóstico Pré-Natal/métodos , Aneuploidia , Variações do Número de Cópias de DNA , Cromossomos , Transtornos Cromossômicos/diagnóstico
4.
Mol Syndromol ; 15(1): 71-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357262

RESUMO

Introduction: Chromosomal aberrations due to complex chromosomal rearrangements (CCRs) can cause abnormal phenotypes if accompanied by microdeletions or microduplications near the breakpoint, or gene breaks. Case Presentation: We report a prenatal diagnostic case of 2q14.3-q22.1 deletion with ultrasound suggestive of absent nasal bone accompanied by CCRs involving 6 chromosomes. Cytogenetic analysis revealed a karyotype of 46,XY,der(1)t(1;2)(p13.3;p11.2),der(2)t(1;2)inv(2)(q12q14.2)del(2)(q14.3q22.1),t(12;16)(q21.2;q12.1),t(13;21)(q32;q22.1). Chromosomal microarray analysis identified a 14.90 Mb deletion on 2q14.3q22.1. The copy number variant was de novo, as determined by karyotype analysis of the parents' peripheral blood G-banding. Conclusion: The region contains haploinsufficient genes that can cause different phenotypes, mainly associated with neurodevelopmental and autism spectrum disorders. However, the genotype-phenotype correlation is limited in prenatal evaluation. Therefore, the combined use of multiple diagnostic techniques has an important role in the assessment of CCRs and genetic counseling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA