Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014982

RESUMO

PURPOSE: To develop a self-supervised learning method to retrospectively estimate T1 and T2 values from clinical weighted MRI. METHODS: A self-supervised learning approach was constructed to estimate T1, T2, and proton density maps from conventional T1- and T2-weighted images. MR physics models were employed to regenerate the weighted images from the network outputs, and the network was optimized based on loss calculated between the synthesized and input weighted images, alongside additional constraints based on prior information. The method was evaluated on healthy volunteer data, with conventional mapping as references. The reproducibility was examined on two 3.0T scanners. Performance in tumor characterization was inspected by applying the method to a public glioblastoma dataset. RESULTS: For T1 and T2 estimation from three weighted images (T1 MPRAGE, T1 gradient echo sequences, and T2 turbo spin echo), the deep learning method achieved global voxel-wise error ≤9% in brain parenchyma and regional error ≤12.2% in six types of brain tissues. The regional measurements obtained from two scanners showed mean differences ≤2.4% and correlation coefficients >0.98, demonstrating excellent reproducibility. In the 50 glioblastoma patients, the retrospective quantification results were in line with literature reports from prospective methods, and the T2 values were found to be higher in tumor regions, with sensitivity of 0.90 and specificity of 0.92 in a voxel-wise classification task between normal and abnormal regions. CONCLUSION: The self-supervised learning method is promising for retrospective T1 and T2 quantification from clinical MR images, with the potential to improve the availability of quantitative MRI and facilitate brain tumor characterization.

2.
Magn Reson Med ; 92(4): 1421-1439, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38726884

RESUMO

PURPOSE: To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS: A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS: In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION: The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.


Assuntos
Algoritmos , Humanos , Reprodutibilidade dos Testes , Masculino , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Processamento de Imagem Assistida por Computador/métodos , Cardiomiopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Coração/diagnóstico por imagem
3.
J Cardiovasc Magn Reson ; 26(2): 101047, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825155

RESUMO

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0 T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94 %) IgG4-RD patients and 22 (76 %) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r = 0.55, P = 0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6 v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

4.
J Cardiovasc Magn Reson ; 26(1): 100999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38237903

RESUMO

BACKGROUND: High-intensity plaque (HIP) on magnetic resonance imaging (MRI) has been documented as a powerful predictor of periprocedural myocardial injury (PMI) following percutaneous coronary intervention (PCI). Despite the recent proposal of three-dimensional HIP quantification to enhance the predictive capability, the conventional pulse sequence, which necessitates the separate acquisition of anatomical reference images, hinders accurate three-dimensional segmentation along the coronary vasculature. Coronary atherosclerosis T1-weighted characterization (CATCH) enables the simultaneous acquisition of inherently coregistered dark-blood plaque and bright-blood coronary artery images. We aimed to develop a novel HIP quantification approach using CATCH and to ascertain its superior predictive performance compared to the conventional two-dimensional assessment based on plaque-to-myocardium signal intensity ratio (PMR). METHODS: In this prospective study, CATCH MRI was conducted before elective stent implantation in 137 lesions from 125 patients. On CATCH images, dedicated software automatically generated tubular three-dimensional volumes of interest on the dark-blood plaque images along the coronary vasculature, based on the precisely matched bright-blood coronary artery images, and subsequently computed PMR and HIP volume (HIPvol). Specifically, HIPvol was calculated as the volume of voxels with signal intensity exceeding that of the myocardium, weighted by their respective signal intensities. PMI was defined as post-PCI cardiac troponin-T > 5 × the upper reference limit. RESULTS: The entire analysis process was completed within 3 min per lesion. PMI occurred in 44 lesions. Based on the receiver operating characteristic curve analysis, HIPvol outperformed PMR for predicting PMI (C-statistics, 0.870 [95% CI, 0.805-0.936] vs. 0.787 [95% CI, 0.706-0.868]; p = 0.001). This result was primarily driven by the higher sensitivity HIPvol offered: 0.886 (95% CI, 0.754-0.962) vs. 0.750 for PMR (95% CI, 0.597-0.868; p = 0.034). Multivariable analysis identified HIPvol as an independent predictor of PMI (odds ratio, 1.15 per 10-µL increase; 95% CI, 1.01-1.30, p = 0.035). CONCLUSIONS: Our semi-automated method of analyzing coronary plaque using CATCH MRI provided rapid HIP quantification. Three-dimensional assessment using this approach had a better ability to predict PMI than conventional two-dimensional assessment.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Intervenção Coronária Percutânea , Placa Aterosclerótica , Valor Preditivo dos Testes , Humanos , Masculino , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Idoso , Intervenção Coronária Percutânea/efeitos adversos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Fatores de Risco , Resultado do Tratamento , Stents , Área Sob a Curva , Curva ROC , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
5.
Gastric Cancer ; 27(3): 571-579, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457083

RESUMO

BACKGROUND: It remains unclear whether addition of docetaxel to the combination of a platinum and fluoropyrimidine could provide more clinical benefits than doublet chemotherapies in the perioperative treatment for locally advanced gastric/gastro-esophageal junction (LAG/GEJ) cancer in Asia. In this randomized, phase 2 study, we assessed the efficacy and safety of perioperative docetaxel plus oxaliplatin and S-1 (DOS) versus oxaliplatin plus S-1 (SOX) in LAG/GEJ adenocarcinoma patients. METHODS: Patients with cT3-4 Nany M0 G/GEJ adenocarcinoma were randomized (1:1) to receive 4 cycles of preoperative DOS or SOX followed by D2 gastrectomy and another 4 cycles of postoperative chemotherapy. The primary endpoint was major pathological response (MPR). RESULTS: From Aug, 2015 to Dec, 2019,154 patients were enrolled and 147 patients included in final analysis, with a median age of 60 (26-73) years. DOS resulted in significantly higher MPR (25.4 vs. 11.8%, P = 0.04). R0 resection rate, the 3-year PFS and 3-year OS rates were 78.9 vs. 61.8% (P = 0.02), 52.3 vs. 35% (HR 0.667, 95% CI: 0.432-1.029, Log rank P = 0.07) and 57.5 vs. 49.2% (HR 0.685, 95% CI: 0.429-1.095, Log rank P = 0.11) in the DOS and SOX groups, respectively. Patients who acquired MPR experienced significantly better survival. DOS had similar tolerance to SOX. CONCLUSIONS: Perioperative DOS improved MPR significantly and tended to produce longer PFS compared to SOX in LAG/GEJ cancer in Asia, and might be considered as a preferred option for perioperative chemotherapy and worth further investigation.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Pessoa de Meia-Idade , Idoso , Docetaxel/uso terapêutico , Oxaliplatina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Junção Esofagogástrica/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia
6.
Magn Reson Med ; 90(6): 2362-2374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578085

RESUMO

PURPOSE: Deep learning superresolution (SR) is a promising approach to reduce MRI scan time without requiring custom sequences or iterative reconstruction. Previous deep learning SR approaches have generated low-resolution training images by simple k-space truncation, but this does not properly model in-plane turbo spin echo (TSE) MRI resolution degradation, which has variable T2 relaxation effects in different k-space regions. To fill this gap, we developed a T2 -deblurred deep learning SR method for the SR of 3D-TSE images. METHODS: A SR generative adversarial network was trained using physically realistic resolution degradation (asymmetric T2 weighting of raw high-resolution k-space data). For comparison, we trained the same network structure on previous degradation models without TSE physics modeling. We tested all models for both retrospective and prospective SR with 3 × 3 acceleration factor (in the two phase-encoding directions) of genetically engineered mouse embryo model TSE-MR images. RESULTS: The proposed method can produce high-quality 3 × 3 SR images for a typical 500-slice volume with 6-7 mouse embryos. Because 3 × 3 SR was performed, the image acquisition time can be reduced from 15 h to 1.7 h. Compared to previous SR methods without TSE modeling, the proposed method achieved the best quantitative imaging metrics for both retrospective and prospective evaluations and achieved the best imaging-quality expert scores for prospective evaluation. CONCLUSION: The proposed T2 -deblurring method improved accuracy and image quality of deep learning-based SR of TSE MRI. This method has the potential to accelerate TSE image acquisition by a factor of up to 9.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
7.
Magn Reson Med ; 89(2): 738-745, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161668

RESUMO

PURPOSE: To develop a novel 3D abdominal CEST MRI technique at 3 T using MR multitasking, which enables entire-liver coverage with free-breathing acquisition. METHODS: k-Space data were continuously acquired with repetitive steady-state CEST (ss-CEST) modules. The stack-of-stars acquisition pattern was used for k-space sampling. MR multitasking was used to reconstruct motion-resolved 3D CEST images of 53 frequency offsets with entire-liver coverage and 2.0 × 2.0 × 6.0 mm3 spatial resolution. The total scan time was 9 min. The sensitivity of amide proton transfer (APT)-CEST (magnetization transfer asymmetry [MTRasym ] at 3.5 ppm) and glycogen CEST (glycoCEST) (mean MTRasym around 1.0 ppm) signals generated with the proposed method were tested with fasting experiments. RESULTS: Both APT-CEST and glycoCEST signals showed high sensitivity between post-fasting and post-meal acquisitions. APT-CEST and glycoCEST MTRasym signals from post-mean scans were significantly increased (APT-CEST: -0.019 ± 0.017 in post-fasting scans, 0.014 ± 0.021 in post-meal scans, p < 0.01; glycoCEST: 0.003 ± 0.009 in post-fasting scans, 0.027 ± 0.021 in post-meal scans, p < 0.01). CONCLUSION: The proposed 3D abdominal steady-state CEST method using MR multitasking can generate CEST images of the entire liver during free breathing.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Imageamento Tridimensional , Amidas
8.
Magn Reson Med ; 89(1): 161-176, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36128892

RESUMO

PURPOSE: To develop an MR multitasking-based dynamic imaging for cerebrovascular evaluation (MT-DICE) technique for simultaneous quantification of permeability and leakage-insensitive perfusion with a single-dose contrast injection. METHODS: MT-DICE builds on a saturation-recovery prepared multi-echo fast low-angle shot sequence. The k-space is randomly sampled for 7.6 min, with single-dose contrast agent injected 1.5 min into the scan. MR multitasking is used to model the data into six dimensions, including three spatial dimensions for whole-brain coverage, a saturation-recovery time dimension, and a TE dimension for dynamic T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ quantification, respectively, and a contrast dynamics dimension for capturing contrast kinetics. The derived pixel-wise T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ time series are converted into contrast concentration-time curves for calculation of kinetic metrics. The technique was assessed for its agreement with reference methods in T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ measurements in eight healthy subjects and, in three of them, inter-session repeatability of permeability and leakage-insensitive perfusion parameters. Its feasibility was also demonstrated in four patients with brain tumors. RESULTS: MT-DICE T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ values of normal gray matter and white matter were in excellent agreement with reference values (intraclass correlation coefficients = 0.860/0.962 for gray matter and 0.925/0.975 for white matter ). Both permeability and perfusion parameters demonstrated good to excellent intersession agreement with the lowest intraclass correlation coefficients at 0.694. Contrast kinetic parameters in all healthy subjects and patients were within the literature range. CONCLUSION: Based on dynamic T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ mapping, MT-DICE allows for simultaneous quantification of permeability and leakage-insensitive perfusion metrics with a single-dose contrast injection.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Permeabilidade
9.
Magn Reson Med ; 89(4): 1496-1505, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36336794

RESUMO

PURPOSE: To extend the MR MultiTasking-based Multidimensional Assessment of Cardiovascular System (MT-MACS) technique with larger spatial coverage and water-fat separation for comprehensive aortocardiac assessment. METHODS: MT-MACS adopts a low-rank tensor image model for 7D imaging, with three spatial dimensions for volumetric imaging, one cardiac motion dimension for cine imaging, one respiratory motion dimension for free-breathing imaging, one T2-prepared inversion recovery time dimension for multi-contrast assessment, and one T2*-decay time dimension for water-fat separation. Nine healthy subjects were recruited for the 3T study. Overall image quality was scored on bright-blood (BB), dark-blood (DB), and gray-blood (GB) contrasts using a 4-point scale (0-poor to 3-excellent) by two independent readers, and their interreader agreement was evaluated. Myocardial wall thickness and left ventricular ejection fraction (LVEF) were quantified on DB and BB contrasts, respectively. The agreement in these metrics between MT-MACS and conventional breath-held, electrocardiography-triggered 2D sequences were evaluated. RESULTS: MT-MACS provides both water-only and fat-only images with excellent image quality (average score = 3.725/3.780/3.835/3.890 for BB/DB/GB/fat-only images) and moderate to high interreader agreement (weighted Cohen's kappa value = 0.727/0.668/1.000/1.000 for BB/DB/GB/fat-only images). There were good to excellent agreements in myocardial wall thickness measurements (intraclass correlation coefficients [ICC] = 0.781/0.929/0.680/0.878 for left atria/left ventricle/right atria/right ventricle) and LVEF quantification (ICC = 0.716) between MT-MACS and 2D references. All measurements were within the literature range of healthy subjects. CONCLUSION: The refined MT-MACS technique provides multi-contrast, phase-resolved, and water-fat imaging of the aortocardiac systems and allows evaluation of anatomy and function. Clinical validation is warranted.


Assuntos
Imageamento Tridimensional , Água , Humanos , Volume Sistólico , Imageamento Tridimensional/métodos , Função Ventricular Esquerda , Ventrículos do Coração , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética
10.
Magn Reson Med ; 90(4): 1672-1681, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246485

RESUMO

PURPOSE: To develop a deep learning method to synthesize conventional contrast-weighted images in the brain from MR multitasking spatial factors. METHODS: Eighteen subjects were imaged using a whole-brain quantitative T1 -T2 -T1ρ MR multitasking sequence. Conventional contrast-weighted images consisting of T1 MPRAGE, T1 gradient echo, and T2 fluid-attenuated inversion recovery were acquired as target images. A 2D U-Net-based neural network was trained to synthesize conventional weighted images from MR multitasking spatial factors. Quantitative assessment and image quality rating by two radiologists were performed to evaluate the quality of deep-learning-based synthesis, in comparison with Bloch-equation-based synthesis from MR multitasking quantitative maps. RESULTS: The deep-learning synthetic images showed comparable contrasts of brain tissues with the reference images from true acquisitions and were substantially better than the Bloch-equation-based synthesis results. Averaging on the three contrasts, the deep learning synthesis achieved normalized root mean square error = 0.184 ± 0.075, peak SNR = 28.14 ± 2.51, and structural-similarity index = 0.918 ± 0.034, which were significantly better than Bloch-equation-based synthesis (p < 0.05). Radiologists' rating results show that compared with true acquisitions, deep learning synthesis had no notable quality degradation and was better than Bloch-equation-based synthesis. CONCLUSION: A deep learning technique was developed to synthesize conventional weighted images from MR multitasking spatial factors in the brain, enabling the simultaneous acquisition of multiparametric quantitative maps and clinical contrast-weighted images in a single scan.


Assuntos
Aprendizado Profundo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
11.
J Cardiovasc Magn Reson ; 25(1): 4, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710360

RESUMO

BACKGROUND: This study aimed to compare the coronary plaque characterization by cardiovascular magnetic resonance (CMR) and near-infrared spectroscopy (NIRS)-intravascular ultrasound (IVUS) (NIRS-IVUS), and to determine whether pre-percutaneous coronary intervention (PCI) evaluation using CMR identifies high-intensity plaques (HIPs) at risk of peri-procedural myocardial infarction (pMI). Although there is little evidence in comparison with NIRS-IVUS findings, which have recently been shown to identify vulnerable plaques, we inferred that CMR-derived HIPs would be associated with vulnerable plaque features identified on NIRS-IVUS. METHODS: 52 patients with stable coronary artery disease who underwent CMR with non-contrast T1-weighted imaging and PCI using NIRS-IVUS were studied. HIP was defined as a signal intensity of the coronary plaque-to-myocardial signal intensity ratio (PMR) ≥ 1.4, which was measured from the data of CMR images. We evaluated whether HIPs were associated with the NIRS-derived maximum 4-mm lipid-core burden index (maxLCBI4mm) and plaque morphology on IVUS, and assessed the incidence and predictor of pMI defined by the current Universal Definition using high-sensitive cardiac troponin-T. RESULTS: Of 62 lesions, HIPs were observed in 30 lesions (48%). The HIP group had a significantly higher remodeling index, plaque burden, and proportion of echo-lucent plaque and maxLCBI4mm ≥ 400 (known as large lipid-rich plaque [LRP]) than the non-HIP group. The correlation between the maxLCBI4mm and PMR was significantly positive (r = 0.51). In multivariable logistic regression analysis for prediction of HIP, NIRS-derived large LRP (odds ratio [OR] = 5.41; 95% confidence intervals [CIs] 1.65-17.8, p = 0.005) and IVUS-derived echo-lucent plaque (OR = 5.12; 95% CIs 1.11-23.6, p = 0.036) were strong independent predictors. Furthermore, pMI occurred in 14 of 30 lesions (47%) with HIP, compared to only 5 of 32 lesions (16%) without HIP (p = 0.005). In multivariable logistic regression analysis for prediction of incidence of pMI, CMR-derived HIP (OR = 5.68; 95% CIs 1.53-21.1, p = 0.009) was a strong independent predictor, but not NIRS-derived large LRP and IVUS-derived echo-lucent plaque. CONCLUSIONS: There is an important relationship between CMR-derived HIP and NIRS-derived large LRP. We also confirmed that non-contrast T1-weighted CMR imaging is useful for characterization of vulnerable plaque features as well as for pre-PCI risk stratification. Trial registration The ethics committee of Juntendo Clinical Research and Trial Center approved this study on January 26, 2021 (Reference Number 20-313).


Assuntos
Doença da Artéria Coronariana , Espectroscopia de Ressonância Magnética , Placa Aterosclerótica , Espectroscopia de Luz Próxima ao Infravermelho , Ultrassonografia de Intervenção , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Lipídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Infarto do Miocárdio/epidemiologia , Intervenção Coronária Percutânea/efeitos adversos , Placa Aterosclerótica/diagnóstico por imagem , Valor Preditivo dos Testes , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ultrassonografia de Intervenção/métodos
12.
World J Surg Oncol ; 21(1): 61, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823639

RESUMO

Lymph node metastasis (LNM) is an important factor affecting the prognosis of patients with gastric adenocarcinoma (STAD), which is the most common malignancy of the human digestive system. Current detection techniques have limited sensitivity and specificity, and there is a lack of effective biomarkers to screen for LNM. Therefore, it is critical to screen for biomarkers that predict LNM in STAD. Gene expression differential analysis (false discovery rate < 0.05, |log2Fold change| ≥1.5) was performed on 102 LNM samples, 224 non-LNM samples, and 29 normal gastric tissue samples from The Cancer Genome Atlas (TCGA) STAD dataset, and 269 LNM-specific genes (DEGs) were obtained. Enrichment analysis showed that LNM-specific genes functioned mainly in cytokine-cytokine receptor interactions, calcium signaling, and other pathways. Ten DEGs significantly associated with overall survival in STAD patients were screened by multivariate Cox regression, and an LNM-based 10-mRNA prognostic signature was established (Logrank P < 0.0001). This 10-mRNA signature was well predicted in both the TCGA training set and the Gene Expression Omnibus validation dataset (GSE84437) and was associated with survival in patients with LNM or advanced-stage STAD. Using Kaplan-Meier survival, receiver operating characteristic curve, C-index analysis, and decision curve analysis, the 10-mRNA signature was found to be a more effective predictor of prognosis in STAD patients than the other two reported models (P < 0.0005). Protein-protein interaction network and gene set enrichment analysis of the 10-mRNA signature revealed that the signature may affect the expression of multiple biological pathways and related genes. Finally, the expression levels of prognostic genes in STAD tissues and cell lines were verified using qRT-PCR, Western blot, and the Human Protein Atlas database. Taken together, the prognostic signature constructed in this study may become an indicator for clinical prognostic assessment of LNM-STAD and provide a new strategy for future targeted therapy.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Metástase Linfática , Prognóstico , Adenocarcinoma/genética , Neoplasias Gástricas/genética
13.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203254

RESUMO

Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of 94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and 17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics of bladder cancer provides insight into discriminative features capable of more accurately staging bladder cancer. Additional studies are underway.


Assuntos
Inteligência Artificial , Neoplasias da Bexiga Urinária , Humanos , RNA-Seq , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/genética , Imageamento por Ressonância Magnética , Músculos
14.
Radiology ; 302(3): 557-565, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904874

RESUMO

Background The histologic nature of coronary high-intensity plaques (HIPs) at T1-weighted MRI in patients with stable coronary artery disease remains to be fully understood. Coronary atherosclerosis T1-weighted characterization (CATCH) enables HIP detection by simultaneously acquiring dark-blood plaque and bright-blood anatomic reference images. Purpose To determine if intraplaque hemorrhage (IPH) or lipid is the predominant substrate of HIPs on T1-weighted images by comparing CATCH MRI scans with findings on near-infrared spectroscopy (NIRS) intravascular US (IVUS) images. Materials and Methods This study retrospectively included consecutive patients who underwent CATCH MRI before NIRS IVUS between December 2019 and February 2021 at two facilities. At MRI, HIP was defined as plaque-to-myocardium signal intensity ratio of at least 1.4. The presence of an echolucent zone at IVUS (reported to represent IPH) was recorded. NIRS was used to determine the lipid component of atherosclerotic plaque. Lipid core burden index (LCBI) was calculated as the fraction of pixels with a probability of lipid-core plaque greater than 0.6 within a region of interest. Plaque with maximum LCBI within any 4-mm-long segment (maxLCBI4 mm) greater than 400 was regarded as lipid rich. Multivariable analysis was performed to evaluate NIRS IVUS-derived parameters associated with HIPs. Results There were 205 plaques analyzed in 95 patients (median age, 74 years; interquartile range [IQR], 67-78 years; 75 men). HIPs (n = 42) at MRI were predominantly associated with an echolucent zone at IVUS (79% [33 of 42] vs 8.0% [13 of 163], respectively; P < .001) and a higher maxLCBI4 mm at NIRS (477 [IQR, 258-738] vs 232 [IQR, 59-422], respectively; P < .001) than non-HIPs. In the multivariable model, HIPs were independently associated with an echolucent zone (odds ratio, 24.5; 95% CI: 9.3, 64.7; P < .001), but not with lipid-rich plaque (odds ratio, 2.0; 95% CI: 0.7, 5.4; P = .20). Conclusion The predominant substrate of T1-weighed MRI-defined high-intensity plaques in stable coronary artery disease was intraplaque hemorrhage, not lipid. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Stuber in this issue.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ultrassonografia de Intervenção/métodos , Idoso , Feminino , Humanos , Masculino , Estudos Retrospectivos
15.
Magn Reson Med ; 87(1): 102-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34398991

RESUMO

PURPOSE: To address head motion in brain MRI with a novel motion-resolved imaging framework, with application to motion-robust quantitative multiparametric mapping. METHODS: MR multitasking conceptualizes the underlying multiparametric image in the presence of motion as a multidimensional low-rank tensor. By incorporating a motion-state dimension into the parameter dimensions and introducing unsupervised motion-state binning and outlier motion reweighting mechanisms, the brain motion can be readily resolved for motion-robust quantitative imaging. A numerical motion phantom was used to simulate different discrete and periodic motion patterns under various translational and rotational scenarios, as well as investigate the sensitivity to exceptionally small and large displacements. In vivo brain MRI was performed to also evaluate different real discrete and periodic motion patterns. The effectiveness of motion-resolved imaging for simultaneous T1 /T2 /T1ρ mapping in the brain was investigated. RESULTS: For all 14 simulation scenarios of small, intermediate, and large motion displacements, the motion-resolved approach produced T1 /T2 /T1ρ maps with less absolute difference errors against the ground truth, lower RMSE, and higher structural similarity index measure of T1 /T2 /T1ρ measurements compared to motion removal, and no motion handling. For in vivo experiments, the motion-resolved approach produced T1 /T2 /T1ρ maps with the best image quality free from motion artifacts under random discrete motion, tremor, periodic shaking, and nodding patterns compared to motion removal and no motion handling. The proposed method also yielded T1 /T2 /T1ρ measurement distributions closest to the motion-free reference, with minimal measurement bias and variance. CONCLUSION: Motion-resolved quantitative brain imaging is achieved with multitasking, which is generalizable to various head motion patterns without explicit need for registration-based motion correction.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Movimento (Física) , Imagens de Fantasmas
16.
Magn Reson Med ; 87(1): 488-495, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374468

RESUMO

PURPOSE: To develop a deep-learning-based method to quantify multiple parameters in the brain from conventional contrast-weighted images. METHODS: Eighteen subjects were imaged using an MR Multitasking sequence to generate reference T1 and T2 maps in the brain. Conventional contrast-weighted images consisting of T1 MPRAGE, T1 GRE, and T2 FLAIR were acquired as input images. A U-Net-based neural network was trained to estimate T1 and T2 maps simultaneously from the contrast-weighted images. Six-fold cross-validation was performed to compare the network outputs with the MR Multitasking references. RESULTS: The deep-learning T1 /T2 maps were comparable with the references, and brain tissue structures and image contrasts were well preserved. A peak signal-to-noise ratio >32 dB and a structural similarity index >0.97 were achieved for both parameter maps. Calculated on brain parenchyma (excluding CSF), the mean absolute errors (and mean percentage errors) for T1 and T2 maps were 52.7 ms (5.1%) and 5.4 ms (7.1%), respectively. ROI measurements on four tissue compartments (cortical gray matter, white matter, putamen, and thalamus) showed that T1 and T2 values provided by the network outputs were in agreement with the MR Multitasking reference maps. The mean differences were smaller than ± 1%, and limits of agreement were within ± 5% for T1 and within ± 10% for T2 after taking the mean differences into account. CONCLUSION: A deep-learning-based technique was developed to estimate T1 and T2 maps from conventional contrast-weighted images in the brain, enabling simultaneous qualitative and quantitative MRI without modifying clinical protocols.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
17.
Magn Reson Med ; 87(1): 120-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418152

RESUMO

PURPOSE: To develop a 3D multitasking multi-echo (MT-ME) technique for the comprehensive characterization of liver tissues with 5-min free-breathing acquisition; whole-liver coverage; a spatial resolution of 1.5 × 1.5 × 6 mm3 ; and simultaneous quantification of T1 , water-specific T1 (T1w ), proton density fat fraction (PDFF), and R2∗ . METHODS: Six-echo bipolar spoiled gradient echo readouts following inversion recovery preparation was performed to generate T1 , water/fat, and R2∗ contrast. MR multitasking was used to reconstruct the MT-ME images with 3 spatial dimensions: 1 T1 recovery dimension, 1 multi-echo dimension, and 1 respiratory dimension. A basis function-based approach was developed for T1w quantification, followed by the estimation of R2∗ and T1 -corrected PDFF. The intrasession repeatability and agreement against references of MT-ME measurements were tested on a phantom and 15 clinically healthy subjects. In addition, 4 patients with confirmed liver diseases were recruited, and the agreement between MT-ME measurements and references was assessed. RESULTS: MT-ME produced high-quality, coregistered T1 , T1w , PDFF, and R2∗ maps with good intrasession repeatability and substantial agreement with references on phantom and human studies. The intra-class coefficients of T1 , T1w , PDFF, and R2∗ from the repeat MT-ME measurements on clinically healthy subjects were 0.989, 0.990, 0.999, and 0.988, respectively. The intra-class coefficients of T1 , PDFF, and R2∗ between the MT-ME and reference measurements were 0.924, 0.987, and 0.975 in healthy subjects and 0.980, 0.999, and 0.998 in patients. The T1w was independent to PDFF (R = -0.029, P = .904). CONCLUSION: The proposed MT-ME technique quantifies T1 , T1w , PDFF, and R2∗ simultaneously and is clinically promising for the comprehensive characterization of liver tissue properties.


Assuntos
Prótons , Água , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
18.
Magn Reson Med ; 87(3): 1375-1389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34708438

RESUMO

PURPOSE: To develop a new technique that enables simultaneous quantification of whole-brain T1 , T2 , T2∗ , as well as susceptibility and synthesis of six contrast-weighted images in a single 9.1-minute scan. METHODS: The technique uses hybrid T2 -prepared inversion-recovery pulse modules and multi-echo gradient-echo readouts to collect k-space data with various T1, T2, and T2∗ weightings. The underlying image is represented as a six-dimensional low-rank tensor consisting of three spatial dimensions and three temporal dimensions corresponding to T1 recovery, T2 decay, and multi-echo behaviors, respectively. Multiparametric maps were fitted from reconstructed image series. The proposed method was validated on phantoms and healthy volunteers, by comparing quantitative measurements against corresponding reference methods. The feasibility of generating six contrast-weighted images was also examined. RESULTS: High quality, co-registered T1 , T2 , and T2∗ susceptibility maps were generated that closely resembled the reference maps. Phantom measurements showed substantial consistency (R2 > 0.98) with the reference measurements. Despite the significant differences of T1 (p < .001), T2 (p = .002), and T2∗ (p = 0.008) between our method and the references for in vivo studies, excellent agreement was achieved with all intraclass correlation coefficients greater than 0.75. No significant difference was found for susceptibility (p = .900). The framework is also capable of synthesizing six contrast-weighted images. CONCLUSION: The MR Multitasking-based 3D brain mapping of T1 , T2 , T2∗ , and susceptibility agrees well with the reference and is a promising technique for multicontrast and quantitative imaging.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Fenômenos Magnéticos , Imagens de Fantasmas
19.
Magn Reson Med ; 88(4): 1748-1763, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713184

RESUMO

PURPOSE: To develop a free-breathing, non-electrocardiogram technique for simultaneous myocardial T1 , T2 , T2 *, and fat-fraction (FF) mapping in a single scan. METHODS: The MR Multitasking framework is adapted to quantify T1 , T2 , T2 *, and FF simultaneously. A variable TR scheme is developed to preserve temporal resolution and imaging efficiency. The underlying high-dimensional image is modeled as a low-rank tensor, which allows accelerated acquisition and efficient reconstruction. The accuracy and/or repeatability of the technique were evaluated on static and motion phantoms, 12 healthy volunteers, and 3 patients by comparing to the reference techniques. RESULTS: In static and motion phantoms, T1 /T2 /T2 */FF measurements showed substantial consistency (R > 0.98) and excellent agreement (intraclass correlation coefficient > 0.93) with reference measurements. In human subjects, the proposed technique yielded repeatable T1 , T2 , T2 *, and FF measurements that agreed with those from references. CONCLUSIONS: The proposed free-breathing, non-electrocardiogram, motion-resolved Multitasking technique allows simultaneous quantification of myocardial T1 , T2 , T2 *, and FF in a single 2.5-min scan.


Assuntos
Coração , Interpretação de Imagem Assistida por Computador , Coração/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Miocárdio , Imagens de Fantasmas , Reprodutibilidade dos Testes
20.
BMC Surg ; 22(1): 342, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36115993

RESUMO

PURPOSE: About 15%-40% of gastric cancer patients have peritoneal metastasis, which leads to poor prognosis. Hyperthermic intraperitoneal chemotherapy (HIPEC) is considered to be an effective treatment for these patients. This study evaluated the efficacy and safety of HIPEC in patients with gastric cancer diagnosed from laboratory tests. METHODS: The clinical and pathological data of 63 patients with gastric cancer who underwent HIPEC in 2017-2021 were prospectively recorded. Fifty-five patients underwent cytoreductive surgery + HIPEC, and eight patients received HIPEC alone. The factors associated with HIPEC safety and efficacy were analyzed. The primary endpoint was overall survival. RESULTS: The average patient age was 54.84 years and 68.3% of patients were male. Moreover, 79.4% of patients had a peritoneal carcinoma index (PCI) score of ≤ 7 and 61.9% had a completeness of cytoreduction score of 0. Because of peritoneal metastasis, 29 patients (46.03%) were classified as stage IV. Laboratory tests showed no differences in pre-HIPEC blood test results compared to post-HIPEC results after removing the effects of surgery. HIPEC treatment did not cause obvious liver or kidney damage. Serum calcium levels decreased significantly after HIPEC (P = 0.0018). The Karnofsky performance status (KPS) score correlated with the patient's physical function and improved after HIPEC (P = 0.0045). In coagulation tests, FDP (P < 0.0001) and D-dimer (P < 0.0001) levels increased significantly and CA242 (P = 0.0159), CA724 (P < 0.0001), and CEA (P < 0.0014) levels decreased significantly after HIPEC. Completeness of cytoreduction score was an independent prognostic factor. HIPEC did not show a survival benefit in patients with gastric cancer (P = 0.5505). CONCLUSION: HIPEC is a safe treatment for patients with gastric cancer with peritoneal metastasis based on the laboratory tests. However, the efficacy of this treatment on gastric-derived peritoneal metastases requires further confirmation.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Neoplasias Gástricas , Cálcio , Antígeno Carcinoembrionário , China/epidemiologia , Terapia Combinada , Feminino , Humanos , Hipertermia Induzida/métodos , Quimioterapia Intraperitoneal Hipertérmica , Masculino , Pessoa de Meia-Idade , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Gástricas/patologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA