Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3690-3701, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350027

RESUMO

This study investigated the presence and human hazards associated with pesticides and other anthropogenic chemicals identified in kale grown in urban and rural environments. Pesticides and related compounds (i.e., surfactants and metabolites) in kale samples were evaluated using a nontargeted data acquisition for targeted analysis method which utilized a pesticide mixture containing >1,000 compounds for suspect screening and quantification. We modeled population-level exposures and assessed noncancer hazards to DEET, piperonyl butoxide, prometon, secbumeton, terbumeton, and spinosyn A using nationally representative estimates of kale consumption across life stages in the US. Our findings indicate even sensitive populations (e.g., pregnant women and children) are not likely to experience hazards from these select compounds were they to consume kale from this study. However, a strictly nontargeted chemical analytical approach identified a total of 1,822 features across all samples, and principal component analysis revealed that the kale chemical composition may have been impacted by agricultural growing practices and environmental factors. Confidence level 2 compounds that were ≥5 times more abundant in the urban samples than in rural samples (p < 0.05) included chemicals categorized as "flavoring and nutrients" and "surfactants" in the EPA's Chemicals and Products Database. Using the US-EPA's Cheminformatics Hazard Module, we identified that many of the nontarget compounds have predicted toxicity scores of "very high" for several end points related to human health. These aspects would have been overlooked using traditional targeted analysis methods, although more information is needed to ascertain whether the compounds identified through nontargeted analysis are of environmental or human health concern. As such, our approach enabled the identification of potentially hazardous compounds that, based on their hazard assessment score, merit follow-up investigations.


Assuntos
Brassica , Praguicidas , Gravidez , Criança , Feminino , Humanos , Fazendas , Medição de Risco , Praguicidas/análise
2.
PNAS Nexus ; 3(8): pgae330, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189022

RESUMO

Acetylperoxyl radical (CH3C(O)OO•) is among highly reactive organic radicals which are known to play crucial roles in atmospheric chemistry, aqueous chemistry and, most recently, peracetic acid (PAA)-based advanced oxidation processes. However, fundamental knowledge for its reactivity is scarce and severely hampers the understanding of relevant environmental processes. Herein, three independent experimental approaches were exploited for revelation and quantification of the reaction rates of acetylperoxyl radical. First, we developed and verified laser flash photolysis of biacetyl, ultraviolet (UV) photolysis of biacetyl, and pulse radiolysis of acetaldehyde, each as a clean source of CH3C(O)OO•. Then, using competition kinetics and selection of suitable probe and competitor compounds, the rate constants between CH3C(O)OO• and compounds of diverse structures were determined. The three experimental approaches complemented in reaction time scale and ease of operation, and provided cross-validation of the rate constants. Moreover, the formation of CH3C(O)OO• was verified by spin-trapped electron paramagnetic resonance, and potential influence of other reactive species in the systems was assessed. Overall, CH3C(O)OO• displays distinctively high reactivity and selectivity, reacting especially favorably with naphthyl and diene compounds (k ∼ 107-108 M-1 s-1) but sluggishly with N- and S-containing groups. Significantly, we demonstrated that incorporating acetylperoxyl radical-oxidation reactions significantly improved the accuracy in modeling the degradation of environmental micropollutants by UV/PAA treatment. This study is among the most comprehensive investigation for peroxyl radical reactivity to date, and establishes a robust methodology for investigating organic radical chemistry. The determined rate constants strengthen kinetic databases and improve modeling accuracy for natural and engineered systems.

3.
ACS ES T Water ; 3(8): 2776-2785, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588805

RESUMO

The susceptibility of 19 representative per- and polyfluoroalkyl substances (PFAS) to direct photolysis and defluorination under far-UVC 222 nm irradiation was investigated. Enhanced photolysis occurred for perfluorocarboxylic acids (PFCAs), fluorotelomer unsaturated carboxylic acids (FTUCAs), and GenX, compared to that at conventional 254 nm irradiation on a similar fluence basis, while other PFAS showed minimal decay. For degradable PFAS, up to 81% of parent compound decay (photolysis rate constant (k222 nm) = 8.19-34.76 L·Einstein-1; quantum yield (Φ222 nm) = 0.031-0.158) and up to 31% of defluorination were achieved within 4 h, and the major transformation products were shorter-chain PFCAs. Solution pH, dissolved oxygen, carbonate, phosphate, chloride, and humic acids had mild impacts, while nitrate significantly affected PFAS photolysis/defluorination at 222 nm. Decarboxylation is a crucial step of photolytic decay. The slower degradation of short-chain PFCAs than long-chain ones is related to molar absorptivity and may also be influenced by chain-length dependent structural factors, such as differences in pKa, conformation, and perfluoroalkyl radical stability. Meanwhile, theoretical calculations indicated that the widely proposed HF elimination from the alcohol intermediate (CnF2n+1OH) of PFCA is an unlikely degradation pathway due to high activation barriers. These new findings are useful for further development of far-UVC technology for PFAS in water treatment.

4.
Animals (Basel) ; 9(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658716

RESUMO

The present experiment was carried out to assess the effects of reconstituted milk (RM), acidified reconstituted milk (ARM), and acidified fresh milk (AFM) on growth performance, diarrhea rate, and hematological parameters of preweaning dairy calves. For this purpose, a total of 27 Holstein female calves (one month of age) with initial body weight of (67.46 ± 4.08) kg were divided into three groups in such a way that each group contained nine calves. Calves were housed individually, and starter was offered ad libitum to each calf. The dietary treatments were RM, ARM, and AFM. The highest milk intake was observed in calves receiving AFM as compared to other treatments (p < 0.01). Calves fed AFM had more feed intake than those fed ARM and RM (p < 0.01). Feed efficiency was significantly lower for calves offered ARM than those offered RM and AFM (p < 0.01). A lower withers height growth was found for calves fed RM than those fed ARM and AFM (p <0.05). Diarrhea rate and white blood cell (WBC) and lymphocytes (LYM) counts were greater for calves fed RM than those fed ARM and AFM (p < 0.05). These findings suggested that ARM and AFM had positive effects on growth performance and health status of the preweaning dairy calves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA