Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Toxicol ; 38(3): 579-590, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36378575

RESUMO

The accumulation of copper (Cu) in the organisms could lead to kidney damage by causing mitochondrial dysfunction. Given that mitochondria are one of the targets of Cu poisoning, this study aimed to investigate the role of mitophagy in Cu-induced mitochondrial dysfunction in renal tubular epithelial cells to understand the mechanism of Cu nephrotoxicity. Hence, the cells were treated with different concentrations of Cu sulfate (CuSO4 ) (0, 100, and 200 µM), and mitophagy inhibitor (Cyclosporine A, 0.5 µM) and/or 200 µM CuSO4 in the combination for 12 h. Results showed that Cu caused mitochondrial swelling, vacuoles, and cristae fracture; increased the number of mitochondrial and lysosome fluorescent aggregation points; upregulated the mRNA levels of mitophagy-associated genes (LC3A, LC3B, P62, BNIP3, NIX, OPTN, NDP52, Cyp D LAMP1, and LAMP2) and protein levels of LC3II/LC3I, BNIP3, and NIX, downregulated the mRNA and protein levels of P62; reduced the mitochondrial membrane potential (MMP), ATP content, mitochondrial respiratory control rate (RCR), mitochondrial respiratory control rate (OPR), and the mRNA and protein levels of PGC-1α, TOMM20, and Mfn2, but increased the mRNA and protein levels of Drp1. Besides, cotreatment with Cu and CsA dramatically decreased the level of mitophagy, but increased mitochondrial division, further reduced MMP, ATP content, RCR, and OPR, mitochondrial fusion and thereby reduced mitochondrial biogenesis. Taken together, these data indicated that Cu exposure induced BNIP3/NIX-dependent mitophagy in duck renal tubular epithelial cells, and inhibition of mitophagy aggravated Cu-induced mitochondrial dysfunction.


Assuntos
Patos , Mitofagia , Animais , Mitofagia/genética , Patos/genética , Patos/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139070

RESUMO

Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.


Assuntos
Proteínas Quinases Ativadas por AMP , Patos , Animais , Proteína X Associada a bcl-2/metabolismo , Dinâmica Mitocondrial , Ecossistema , Peróxido de Hidrogênio , Fígado/metabolismo , Apoptose , Cromo/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase
3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139133

RESUMO

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Assuntos
Berberina , Fígado Gorduroso , Microbioma Gastrointestinal , Animais , Feminino , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Dieta com Restrição de Proteínas , Galinhas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo
4.
Ecotoxicol Environ Saf ; 235: 113438, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339877

RESUMO

Copper (Cu) as a transition metal can be toxic to public and ecosystem health at high level, but the specific mechanism of Cu-evoked nephrotoxicity remains elusive. Here, we first revealed the crosstalk between mitofusin2 (Mfn2)-dependent mitochondria-associated endoplasmic reticulum membrane (MAM) dynamics and autophagy in duck renal tubular epithelial cells under Cu exposure. Primary duck renal tubular epithelial cells were treated with 100 and 200 µM Cu sulfate for 12 h and exposed to lentivirus to deliver mitofusin2 (Mfn2). We found that excessive Cu disrupted MAM integrity, decreased the mitochondrial calcium level, co-localization of IP3R and VDAC1, the mRNA levels of PACS2, Mfn2, IP3R and MCU, and Mfn2 and VDAC1 protein levels, causing MAM dysfunction. Furthermore, Mfn2 overexpression ameliorated Cu-induced MAM dysfunction, and increased Cu-evoked autophagy in duck renal tubular epithelial cells accompanied with the elevation of autophagosomes number, ROS level, LC3 puncta, Atg5 and LC3B mRNA levels, and Beclin1, Atg14, LC3BII/LC3BI protein levels. Accordingly, our data proved that excessive Cu could trigger MAM dysfunction and autophagy in duck renal tubular epithelial cells, and Cu-induced autophagy could be activated through Mfn2-dependent MAM, providing evidence on the toxicological exploration mechanisms of Cu.


Assuntos
Cobre , Patos , Animais , Autofagia/fisiologia , Cobre/metabolismo , Cobre/toxicidade , Ecossistema , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo
5.
Environ Toxicol ; 37(11): 2660-2672, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35926093

RESUMO

Cadmium (Cd) is detrimental to animals, but nephrotoxic effects of Cd on duck have not been fully elucidated. To evaluate the impacts of Cd on Ca homeostasis and autophagy via PLC-IP3 -IP3 R pathway, primary duck renal tubular epithelial cells were exposed to 2.5 µM and 5.0 µM Cd, and combination of 5.0 µM Cd and 10.0 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h). These results evidenced that Cd induced [Ca2+ ]c overload mainly came from intracellular Ca store. Cd caused [Ca2+ ]mit and [Ca2+ ]c overload with [Ca2+ ]ER decrease, elevated Ca homeostasis related factors (GRP78, GRP94, CRT, CaN, CaMKII, and CaMKKß) expression, PLC and IP3 activities and IP3 R expression, but subcellular Ca2+ redistribution was reversed by 2-APB. PLC inhibitor U-73122 dramatically relieved the changes of the above indicators induced by Cd. Additionally, U-73122 obviously reduced the number of autophagosomes and LC3 accumulation spots, Atg5, LC3A, LC3B mRNA levels and LC3II/LC3I, Beclin-1 protein levels induced by Cd, and markedly elevated p62 mRNA and protein levels. Overall, the results verified that Cd induced [Ca2+ ]c overload mainly originated from ER Ca2+ release mediated by PLC-IP3 -IP3 R pathway, then triggered autophagy in duck renal tubular epithelial cells.


Assuntos
Cádmio , Patos , Animais , Autofagia , Proteína Beclina-1/metabolismo , Cádmio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Patos/metabolismo , Células Epiteliais , RNA Mensageiro/metabolismo , Transdução de Sinais
6.
Environ Toxicol ; 37(5): 1185-1197, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35099092

RESUMO

Cadmium (Cd) is an environmental pollutant that has an enormous influence on agricultural production, but selenium (Se) can alleviate its toxicity. The present study aimed to illustrate the effects of Se on Cd-induced heart injury. All 40 rabbits were randomly divided into four groups: control group, Se [0.5 mg kg-1 ·body weight (BW)] group, Cd (1 mg kg-1 ·BW) group, and Se + Cd group. After 30 days of feeding, morphological changes, the levels of oxidative stress and myocardial enzyme, the content of cardiac troponin T, programmed cell death (pyroptosis, autophagy and apoptosis), and PI3K/AKT/PTEN transduction capacity were observed. The results showed that Cd destroyed the physiological balance of trace elements and caused myocardial damage, increased the cardiac oxidative damage and led to programmed cell death. Coadministration of Se prominently ameliorated histological lesions and improved cardiac function of hearts in Cd-induced rabbits. Furthermore, Se exerted detoxification and oxidation resistance, maintained trace element homeostasis, and alleviated the changes of mRNA and protein levels of pyroptosis-, autophagy- and apoptosis-controlling factors and PI3K/AKT/PTEN signal molecules caused by Cd. In conclusion, Se might protect against Cd-induced pyroptosis, autophagy and apoptosis by interfering with PI3K/AKT/PTEN signaling in heart.


Assuntos
Traumatismos Cardíacos , Selênio , Animais , Apoptose , Cádmio/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Selênio/farmacologia
7.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682929

RESUMO

Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 µM) and/or Se (0.4 µM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.


Assuntos
Proteína HMGB1 , Selênio , Animais , Cádmio/metabolismo , Patos , Proteína HMGB1/metabolismo , Hepatócitos/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selênio/farmacologia
8.
Ecotoxicol Environ Saf ; 208: 111528, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157513

RESUMO

OBJECTIVE: Excess molybdenum (Mo) is harmful to the body, and the kidney is the vital target organ for Mo exposure. This study focused on the impacts of excess Mo on pyroptosis and the relationship between pyroptosis and apoptosis in kidney. METHODS: The duck renal tubular epithelial cells were treated with (NH4)6Mo7O24·4H2O (0, 480, 720 and 960 µM Mo), N-acetyl-L-cysteine (NAC) (100 µM), Z-YVAD-fluoromethylketone (YVAD) (10 µM) and the combination of Mo and NAC or YVAD for 12 h. The LDH release and IL-1ß, IL-18 contents of cell supernatant were detected by LDH and ELISA kits. The MMP and ROS level were measured using MMP and ROS kits by flow cytometry. The apoptotic rate of cell was detected by AO/EB counterstaining. Pyroptosis and apoptosis-related factors mRNA and protein levels were assayed by real-time qPCR and western blot, respectively. RESULTS: Excessive Mo markedly increased LDH, IL-18, IL-1ß releases and induced overproduction of ROS, pyroptosis-related factors mRNA and protein levels. NAC and YVAD dramatically decreased pyroptosis induced by Mo. Simultaneously, YVAD significantly changed apoptosis-related factors mRNA and protein levels, and reduced cell apoptotic rate. CONCLUSION: Excessive Mo exposure can induce pyroptosis by the ROS/NLRP3/Caspase-1 pathway in duck renal tubular epithelial cells, and restraining pyroptosis of Caspase-1 dependence might weaken excess Mo-induced apoptosis. The study provides theoretical basis for excess Mo exposure nephrotoxic researches on waterfowl and the interplay between pyroptosis and apoptosis highlights a new sight into the mechanism of Mo-induced nephrotoxicity.


Assuntos
Caspase 1/metabolismo , Substâncias Perigosas/toxicidade , Molibdênio/toxicidade , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/metabolismo , Animais , Apoptose , Patos/metabolismo , Patos/fisiologia , Células Epiteliais/metabolismo , Humanos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
9.
Ecotoxicol Environ Saf ; 209: 111771, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348253

RESUMO

Excessive molybdenum (Mo) has adverse effects on animals. To elucidate the effects of autophagy on Mo-induced nephrotoxicity, the duck renal tubular epithelial cells were cultured in medium in absence and presence of (NH4)6Mo7O24.4H2O (0, 480, 720, 960 µM Mo), 3-Methyladenine (3-MA) (2.5 µM), and the combination of Mo and 3-MA for 12 h. After 12 h exposure, the MDC staining, morphologic observation, LC3 puncta, cell viability, autophagy-related genes mRNA and proteins levels, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, antioxidant indices, mitochondrial membrane potential (MMP), mitochondrial mass, mitochondrial respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) were determined. The results showed that excessive Mo exposure significantly elevated the number of autophagosome and LC3 puncta, upregulated Beclin-1, Atg5, LC3A and LC3B mRNA levels, and LC3II/LC3I and Beclin-1 protein levels, decreased mTOR, p62 and Dynein mRNA levels and p62 protein level. Besides, co-treatment with Mo and 3-MA dramatically increased LDH release, ROS level, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents as well as cell dam age, reduced cell viability, the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), MMP, mitochondrial mass, mitochondrial RCR and OPR compared to treatment with Mo alone. Taken together, these results suggest that excessive Mo exposure can induce autophagy in duck renal tubular epithelial cells, inhibition of autophagy aggravates Mo-induced mitochondrial dysfunction by regulating oxidative stress.


Assuntos
Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Molibdênio/toxicidade , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Catalase/metabolismo , Patos/metabolismo , Patos/fisiologia , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
10.
Avian Pathol ; 49(2): 171-178, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31774299

RESUMO

Fatty liver haemorrhagic syndrome (FLHS) is characterized by hepatic rupture and haemorrhage leading to sudden death in laying hens. Resveratrol (Res) is a natural polyphenol with antioxidant and anti-inflammatory effects that can ameliorate chronic liver disease. The aim of this study was to investigate the improved effect of Res on the altered expression of autophagy and apoptosis-related genes in laying hens with FLHS. A total of 144 healthy 150-day-old laying hens were randomly divided into four groups: control group (standard diet), HELP group (high-energy-low-protein (HELP) diet), HELP + Res group (HELP diet with 400 mg/kg Res) and Res group (standard diet with 400 mg/kg Res). Histopathological lesions of the liver and the mRNA levels of Beclin-1, Atg5, Atg7, p62, Bcl-2, Bax and Caspase-3 on days 40, 80, and 120 were measured. The results showed that lipid accumulation and hepatocyte damage in the HELP group were more serious than those in the HELP + Res group. The mRNA levels of Beclin-1, Atg5, Atg7, and Bcl-2 in the HELP and HELP + Res groups were strikingly declined (P < 0.01) compared to the control group, and their mRNA levels were markedly higher in HELP group than those in the HELP + Res group (P < 0.05). Additionally, the mRNA levels of p62, Bax and Caspase-3 were significantly increased in the HELP and HELP + Res groups (P < 0.01 or P < 0.05), but their mRNA levels in the HELP group were higher than those in the HELP + Res group (P < 0.05). Collectively, FLHS could induce severe lipid accumulation, abnormal mRNA levels of liver autophagy and apoptosis-related genes. Res as a dietary supplement could attenuate these abnormal changes.


Assuntos
Galinhas , Fígado Gorduroso/veterinária , Fígado/metabolismo , Doenças das Aves Domésticas/metabolismo , RNA Mensageiro/metabolismo , Resveratrol/uso terapêutico , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas Alimentares/efeitos adversos , Ingestão de Energia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Hemorragia/tratamento farmacológico , Hemorragia/metabolismo , Hemorragia/veterinária , Fígado/patologia , Oviposição , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/genética , RNA Mensageiro/genética
11.
Ecotoxicol Environ Saf ; 205: 111188, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836151

RESUMO

Increasing evidence indicates autophagy and apoptosis are involved in the toxicity mechanism of heavy metals. Our previous studies showed that cadmium (Cd) could induce autophagy and apoptosis in duck kidneys in vivo, nevertheless, the interaction between them has yet to be elucidated. Herein, the cells were either treated with 3CdSO4·8H2O (0, 1.25, 2.5, 5.0 µM Cd) or/and 3-methyladenine (3-MA) (2.5 µM) for 12 h and the indictors related autophagy and apoptosis were detected to assess the correlation between autophagy and apoptosis induced by Cd in duck renal tubular epithelial cells. The results demonstrated that Cd exposure notably elevated intracellular and extracellular Cd contents, the number of autophagosomes and LC3 puncta, up-regulated LC3A, LC3B, Beclin-1, Atg5 mRNA levels, and Beclin-1 and LC3II/LC3I protein levels, down-regulated mTOR, p62 and Dynein mRNA levels and p62 protein level. Additionally, autophagy inhibitor 3-MA decreased Beclin-1, LC3II/LC3I protein levels and increased p62 protein level. Moreover, co-treatment with Cd and 3-MA could notably elevate Caspase-3, Cyt C, Bax, and Bak-1 mRNA levels, Caspase-3 and cleaved Caspase-3 protein levels, and cell apoptotic rate as well as cell damage, decreased mitochondrial membrane potential (MMP), Bcl-2 mRNA level and the ratio of Bcl-2 to Bax compared to treatment with Cd alone. Overall, these results indicate Cd exposure can induce autophagy in duck renal tubular epithelial cells, and inhibition of autophagy might aggravate Cd-induced apoptosis through mitochondria-mediated pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Patos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
12.
Ecotoxicol Environ Saf ; 164: 75-83, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30098508

RESUMO

To investigate the toxic effects of Molybdenum (Mo) and Cadmium (Cd) on trace elements in digestive organs of Shaoxing duck (Anas platyrhyncha), 120 Shaoxing ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. On the 60th and 120th days, the beak, esophagus, glandular stomach, muscular stomach, small intestine, large intestine and feces were collected to determine contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn) and selenium (Se), then correlation analysis was performed. The results showed that Cd content in digestive organs significantly increased in co-treated groups compared to single treated groups and Mo concentration increased in Mo-treated groups compared to control group, whereas Cu, Fe, Zn and Se concentrations in digestive organs decreased in co-treated groups. Furthermore, Cd and Mo were mainly accumulated in the small intestine and esophagus, respectively. There was a strongly positive correlation between Cd and Mo while they had negative correlation with Cu, Fe, Zn and Se, respectively. In feces, Mo and Fe contents in high dose of Mo group and high Mo combined with Cd group were significantly higher than those in control group, and Cu content in all treated groups significantly increased and Cd, Zn and Se concentrations had no difference. The results indicated that dietary Mo or/and Cd might disturb homeostasis of trace elements in digestive organs of Shaoxing duck. Moreover, the two elements presented a synergistic relationship.


Assuntos
Patos/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Trato Gastrointestinal/metabolismo , Metais Pesados/metabolismo , Selênio/metabolismo
13.
Environ Sci Pollut Res Int ; 31(18): 26510-26526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446297

RESUMO

Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.


Assuntos
Encéfalo , Patos , Retículo Endoplasmático , Mitocôndrias , Vanádio , Animais , Encéfalo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Vanádio/toxicidade , Mitocôndrias/efeitos dos fármacos , Autofagia/efeitos dos fármacos
14.
Chem Biol Interact ; 382: 110617, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385403

RESUMO

Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 µM Mo), Cd group (4 µM Cd) and Mo + Cd group (600 µM Mo+4 µM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1ß, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Ovinos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cádmio/toxicidade , Molibdênio/toxicidade , Hepatócitos , Retículo Endoplasmático/metabolismo , Mitocôndrias
15.
Environ Pollut ; 319: 120954, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581240

RESUMO

Cadmium (Cd) is a poisonous metal element that causes mitochondrial dysfunction. Selenium (Se) can reduce the damage of Cd to various organs of animals, but the protective mechanism of Se in Cd-induced lung injury has not been fully elucidated. For purpose of further illustrating the specific mechanism of Se alleviated Cd-triggered pulmonary toxicity, 48 sheep were divided into 4 groups, of which the sheep in the treatment group were taken 1 mg/kg body weight (BW) of Cd, 0.34 mg/kg BW of Se, and 0.34 mg Se + 1 mg/kg BW of Cd by intragastric administration for 50 d, respectively. The results indicated that Cd caused inflammatory cell infiltration and alveolar wall thickening, which facilitated mitochondrial vacuolation and formation of mitophagosomes in lung tissues. Simultaneously, Cd treatment impaired the antioxidant capacity of sheep lung tissue. Additionally, Cd treatment down-regulated the expression levels of mitochondrial biogenesis and mitochondrial fusion, but up-regulated the levels of mitochondrial fission and mitophagy mediated by FUNDC1. Moreover, the immunofluorescence co-localization puncta of LC3B/COX IV, LC3B/FUNDC1 were increased after Cd treatment. Nevertheless, co-treatment with Se improved effectively the above variation caused by Cd exposure. In summary, Se could mitigate Cd-generated mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep.


Assuntos
Cádmio , Selênio , Animais , Ovinos , Cádmio/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Mitofagia , Mitocôndrias , Pulmão/metabolismo
16.
Environ Sci Pollut Res Int ; 30(31): 77127-77138, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253910

RESUMO

Copper (Cu) can be harmful to host physiology at high levels, although it is still unclear exactly how it causes nephrotoxicity. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are associated with heavy metal intoxication. Meanwhile, mitochondria and ER are connected via mitochondria-associated ER membranes (MAM). In order to reveal the crosstalk between them, a total of 144 1-day-old Peking ducks were randomly divided into four groups: control (basal diet), 100 mg/kg Cu, 200 mg/kg Cu, and 400 mg/kg Cu groups. Results found that excessive Cu disrupted MAM integrity, reduced the co-localization of IP3R and VDAC1, and significantly changed the MAM-related factors levels (Grp75, Mfn2, IP3R, MCU, PACS2, and VDAC1), leading to MAM dysfunction. We further found that Cu exposure induced mitochondrial dysfunction via decreasing the ATP level and the expression levels of COX4, TOM20, SIRT1, and OPA1 and up-regulating Parkin expression level. Meanwhile, Cu exposure dramatically increased the expression levels of Grp78, CRT, and ATF4, resulting in ER stress. Overall, these findings demonstrated MAM plays the critical role in Cu-induced kidney mitochondrial dysfunction and ER stress, which deepened our understanding of Cu-induced nephrotoxicity.


Assuntos
Cobre , Patos , Animais , Cobre/toxicidade , Cobre/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Rim/metabolismo , Estresse do Retículo Endoplasmático
17.
Sci Total Environ ; 869: 161741, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36693574

RESUMO

Excessive vanadium (V) contamination is an attracting growing concern, which can negatively affect the health of human and ecosystems. But how V causes nephrotoxicity and the role of mitochondria-associated endoplasmic reticulum membrane (MAM) in V-induced nephrotoxicity have remained elusive. To explore the detailed mechanism and screen of potential effective drugs for V-evoked nephrotoxicity, a total of 72 ducks were divided into two groups, control group and V group (30 mg/kg V). Results showed that excessive V damaged kidney function of ducks including causing histopathological abnormality, biochemical makers derangement and oxidative stress. Then MAM of duck kidneys was extracted to investigate differentially expressed proteins (DEPs) under V exposure using proteomics analysis. Around 4240 MAM-localized proteins were identified, of which 412 DEPs showed dramatic changes, including 335 upregulated and 77 downregulated DEPs. On the basis of gene ontology (GO), string and KEGG database analysis, excessive V led to nephrotoxicity primarily by affecting MAM-mediated metabolic pathways, especially elevating the endoplasmic Reticulum (ER) proteostasis related pathway. Further validation analysis of the detected genes and proteins of ER proteostasis related pathway under V poisoning revealed a consistent relationship with proteome analysis, indicating that V disrupted MAM-mediated ER proteostasis. Accordingly, our data proved the critical role for MAM in V-evoked nephrotoxicity, particularly with MAM-mediated ER proteostasis, providing promising insights into the toxicological exploration mechanisms of V.


Assuntos
Mitocôndrias , Vanádio , Humanos , Mitocôndrias/metabolismo , Vanádio/metabolismo , Proteostase , Proteômica , Ecossistema , Retículo Endoplasmático/metabolismo
18.
Chemosphere ; 298: 134275, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35278442

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.


Assuntos
Patos , Molibdênio , Animais , Apoptose , Cádmio/metabolismo , Cádmio/toxicidade , Caspase 3/metabolismo , Caspase 9/metabolismo , Patos/metabolismo , Estresse do Retículo Endoplasmático , Molibdênio/metabolismo , Molibdênio/toxicidade , RNA Mensageiro/metabolismo , Baço/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
J Inorg Biochem ; 232: 111809, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421768

RESUMO

Vanadium (V) is necessary for the health and growth of animals, but excessive V has harmful effects on the ecosystem health. Endoplasmic reticulum (ER)-mitochondria coupling as a membrane structure connects the mitochondrial outer membrane with the ER. The mitochondria-associated ER membrane (MAM) is a region of the ER-mitochondria coupling and is essential for normal cell function. Currently, the crosstalk between ER-mitochondrial coupling and apoptosis in the toxic mechanism of V on duck kidney is still unclear. In this study, duck renal tubular epithelial cells were incubated with different concentrations of sodium metavanadate (NaVO3) and/or inositol triphosphate receptor (IP3R) inhibitor 2-aminoethyl diphenyl borate (2-APB) for 24 h. The results showed that V could significantly increase lactate dehydrogenase (LDH) release, the mitochondrial calcium level and the numbers of the fluorescent signal points of IP3R; shortened the length ER-mitochondria coupling and reduced its formation; markedly upregulate the mRNA levels of MAM-related genes and protein levels, causing MAM dysfunction. Additionally, V treatment appeared to upregulate pro-apoptotic genes and downregulate anti-apoptotic genes, followed by cell apoptosis. The V-induced changes were alleviated by treatment with IP3R inhibitor. In summary, V could induce the dysfunction of ER-mitochondrial coupling and apoptosis, and inhibition of ER-mitochondrial coupling could attenuate V-induced apoptosis in duck renal tubular epithelial cells.


Assuntos
Patos , Vanádio , Animais , Apoptose , Cálcio/metabolismo , Patos/metabolismo , Ecossistema , Retículo Endoplasmático , Células Epiteliais/metabolismo , Mitocôndrias , Vanádio/farmacologia
20.
Environ Sci Pollut Res Int ; 29(25): 38303-38314, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35076842

RESUMO

Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but neurotoxicity caused by Mo and Cd co-exposure in ducks is yet unknown. To assess joint impacts of Mo and Cd on autophagy via calcium homeostasis and unfolded protein response (UPR) in duck brain, 40 healthy 7-day-old ducks (Anas platyrhyncha) were assigned to 4 groups at random and fed diets supplemented with different doses of Mo or/and Cd for 16 weeks, respectively. Brain tissues were excised for experiment. Results exhibited that Mo or/and Cd disturbed calcium homeostasis by decreased ATPase activities and increased calcium (Ca) content, and upregulated calcium homeostasis-related factors Ca2+/CAM-dependent kinase IIɑ (CaMKIIɑ), calcineurin (CaN), inositol-1,4,5-trisphosphate receptor (IP3R), and calreticulin (CRT) expression levels. Meanwhile, the upregulation of UPR-related factor expression levels indicated that Mo or/and Cd activated UPR. Moreover, Mo or/and Cd triggered autophagy through promoting the number of autophagosomes and LC3II immunofluorescence intensity and altering autophagy key factor expression levels. Correlation analysis showed that there were obvious connections among Ca2+ homeostasis, endoplasmic reticulum (ER) stress, and autophagy induced by Mo or/and Cd. Thence, it can be speculated that autophagy initiated by Mo or/and Cd may be associated with interfering Ca2+ homeostasis and triggering UPR.


Assuntos
Cádmio , Patos , Animais , Apoptose , Autofagia , Encéfalo/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Patos/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Molibdênio/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA