RESUMO
Fe3O4 nanoparticles (NPs) with different shapes have been prepared by a 'solventless' synthesis approach to probe shape anisotropy effects on the magnetic and inductive heating properties. Various shapes including spheres, octahedrons, cubes, rods, wires, and multipods are obtained through alterations in reaction conditions such as the ratio of precursor to surfactant content and heating rate. Magnetic and Mössbauer measurements reveal better stoichiometry in anisotropic-shaped Fe3O4 NPs than that in the spherical and multipod NPs. As a result, the magnetization value of the anisotropic-shaped NPs approaches the value for bulk material (â¼86 emu g-1). More surprisingly, the Verwey transition, which is a characteristic phase transition of bulk magnetite structure, is observed near 120 K in the anisotropic-shaped NPs, which further corroborates the fact that these NPs possess better stoichiometry compared to the spherical and multipod-shaped NPs. Other than the improved magnetic properties, these anisotropic-shaped NPs are more effective for hyperthermia applications. For example, compared to the conventional spherical NPs, the nanowires show much higher SAR value up to 846 W g-1, making them a potential candidate for practical hyperthermia treatment. In particular, the octahedral NPs shows an SAR value higher than the same size spherical NPs, which demonstrates the importance of occurrence of the Verwey transition in Fe3O4 NPs for better stoichiometric and higher heating.
RESUMO
An efficient heat activating mediator with an enhanced specific absorption rate (SAR) value is attained via control of the iron oxide (Fe3O4) nanoparticle size from 3 to 32 nm. Monodispersed Fe3O4 nanoparticles are synthesized via a seed-less thermolysis technique using oleylamine and oleic acid as the multifunctionalizing agents (surfactant, solvent and reducing agent). The inductive heating properties as a function of particle size reveal a strong increase in the SAR values with increasing particle size up to 28 nm. In particular, the SAR values of ferromagnetic nanoparticles (>16 nm) are strongly enhanced with the increase of ac magnetic field amplitude than that for the superparamagnetic (3-16 nm) nanoparticles. The enhanced SAR values in the ferromagnetic regime are attributed to the synergistic contribution from the hysteresis and susceptibility loss. Specifically, the 28 nm Fe3O4 nanoparticles exhibit an enhanced SAR value of 801 W g-1 which is nearly an order higher than that of the commercially available nanoparticles.
RESUMO
Herein, for the first time, we report copper-cysteamine (Cu-Cy) nanoparticles having Cu1+ instead of Cu2+ as an efficient heterogeneous Fenton-like catalyst for highly selective cancer treatment. Initial measurements of Cu-Cy's hydroxyl radical generation ability show that it behaves as a Fenton-like reagent in the presence of H2O2 (100 µM) at pH 7.4, and that its Fenton-like activity is dramatically enhanced under acidic conditions (pH 6.5 and 5.5). Notably, Cu-Cy exhibits high stability and minimal copper release during the Fenton-like reaction, demonstrating its potency as a heterogeneous Fenton-like catalyst with a low cytotoxic effect. Through extensive in vitro studies, Cu-Cy NPs are found to generate a significantly higher level of ROS, thereby causing significantly more destruction to cancerous cells than to normal cells without the need for exogenous additives, such as H2O2. To the best of our knowledge, the average IC-50 value of Cu-Cy to cancer cells (11 µg/mL) is the lowest among reported heterogeneous Fenton-like nanocatalyst so far. Additionally, compared to cancer cells, Cu-Cy NPs display substantially higher IC-50 value toward normal cells (50 µg/mL), suggesting high selectivity. Overall, Cu-Cy NPs can participate in heterogeneous Fenton-like activity with elevated H2O2 under acidic conditions to produce significantly higher levels of hydroxyl radicals in cancer cells when compared to normal cells, resulting in selective cytotoxicity to cancer cells.
RESUMO
Esophageal cancer (EC) is the sixth leading cause of cancer deaths worldwide with a low 5-year survival rate. More effective chemotherapeutic drugs, either new or repurposing ones, are urgently needed. Disulfiram (DSF) is a safe and public domain drug for alcohol addiction treatment and later shown to have anti-cancer capability, especially when administrated together with copper. The present study is to test the hypothesis that a newly developed copper-cysteamine (Cu-Cy) nanoparticles (NPs) can enhance the anti-tumor effect of DSF on esophageal cancer with reduced risk of copper poisoning. Our results showed that Cu-Cy NPs could greatly facilitate DSF to inhibit cell proliferation in cultured human esophageal cancer cells. Interestingly, the combined inhibitory function could be further enhanced when DSF and Cu-Cy NPs were present at an optimal molar ratio of 1:4. The results of the change in physical color, UV-vis absorption and fluorescence spectra, X-ray diffraction patterns, and FTIR spectra from a mixture of DSF and Cu-Cy NPs suggest a possible reaction between DSF and Cu-Cy NPs and the formation of new materials. Furthermore, cellular mechanistic studies revealed that the combination of DSF and Cu-Cy NPs resulted in reactive oxygen species (ROS) accumulation, and blocked nuclear translocation of NF-ÆB (p65) in esophageal cancer cells. Moreover, in xenograft nude mice, combined administration of DSF and Cu-Cy NPs greatly inhibited tumor growth without noticeable histological toxicity, while any single agent at the same doses presented no inhibitory function. Together, this study demonstrates an effective anti-cancer function of combined treatment of DSF and Cu-Cy NPs in vitro and in vivo, which could be a promising new chemotherapy for esophageal cancer patients.
RESUMO
Localized heat induction using magnetic nanoparticles under an alternating magnetic field is an emerging technology applied in areas including, cancer treatment, thermally activated drug release and remote activation of cell functions. To enhance the induction heating efficiency of magnetic nanoparticles, the intrinsic and extrinsic magnetic parameters influencing the heating efficiency of magnetic nanoparticles should be effectively engineered. This review covers the recent progress in the optimization of magnetic properties of spinel ferrite nanoparticles for efficient heat induction. The key materials factors for efficient magnetic heating including size, shape, composition, inter/intra particle interactions are systematically discussed, from the growth mechanism, process control to chemical and magnetic properties manipulation.
RESUMO
Copper-cysteamine (Cu-Cy) is a novel sensitizer that can be excited by ultraviolet (UV) light, microwave (MW), ultrasound, and X-rays to generate highly toxic reactive oxygen species (ROS) for cancer cell destruction. The purpose of this study is to present a facile method for the synthesis of Cu-Cy nanoparticles. Interestingly, we were able to decrease both the stirring and heating time by about 24 and 6 times, respectively, thus making Cu-Cy nanoparticles more economical than what was reported before. 1,4-Diazabicylo[2.2.2]octane (DABCO), a well-known singlet oxygen quencher, showed that the majority of ROS produced by Cu-Cy nanoparticles upon UV and MW exposure were singlet oxygen. Moreover, ROS generated by Cu-Cy nanoparticles upon UV and MW exposure were confirmed by a known ROS tracking agent, dihydrorhodamine 123, further serving as an additional piece of evidence that Cu-Cy is a promising ROS generating agent to destroy cancer cells as well as bacteria or viruses by a radical therapeutic approach. Additionally, for the first time, the hydroxyl radical (ËOH) produced by Cu-Cy nanoparticles upon MW activation was proved by a photoluminescence (PL) technique using coumarin as a probe molecule. Remarkably, newly synthesized nanoparticles were found to be much more effective for producing ROS and killing cancer cells, suggesting that the new method may have increased the reactivity of the Cu-Cy nanoparticles due to an overall size reduction. Overall, the new method not only reduced the synthesis time but also enhanced the effectiveness of Cu-Cy nanoparticles for photodynamic therapy.