Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 146(23): 15917-15925, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805725

RESUMO

Cu-based catalysts are optimal for the electroreduction of CO2 to generate hydrocarbon products. However, controlling product distribution remains a challenging topic. The theoretical investigations have revealed that the coordination number (CN) of Cu considerably influences the adsorption energy of *CO intermediates, thereby affecting the reaction pathway. Cu catalysts with different CNs were fabricated by reducing CuO precursors via cyclic voltammetry (Cyc-Cu), potentiostatic electrolysis (Pot-Cu), and pulsed electrolysis (Pul-Cu), respectively. High-CN Cu catalysts predominantly generate C2+ products, while low-CN Cu favors CH4 production. For instance, over the high-CN Pot-Cu, C2+ is the main product, with the Faradaic efficiency (FE) reaching 82.5% and a partial current density (j) of 514.3 mA cm-2. Conversely, the low-CN Pul(3)-Cu favors the production of CH4, achieving the highest FECH4 value of 56.7% with a jCH4 value of 234.4 mA cm-2. In situ X-ray absorption spectroscopy and Raman spectroscopy studies further confirm the different *CO adsorptions over Cu catalysts with different CN, thereby directing the reaction pathway of the CO2RR.

2.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530325

RESUMO

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

3.
J Clin Ultrasound ; 52(3): 241-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38041410

RESUMO

OBJECTIVE: Tumor necrosis factor-α (TNF-α) can induce left ventricular remodeling. In this study, we investigated whether the TNF-α-308G>A polymorphism is associated with left ventricular geometry (LVG) and left ventricular functional abnormalities in obstructive sleep apnea (OSA) subjects. METHODS: Two hundred and seventy-eight subjects were enrolled. Echocardiography and genetic data were assessed in all patients. Geometric patterns of the left ventricle were determined from the relative wall thickness and left ventricular mass index (LVMI). Genetic analysis for the TNF-α-308G>A SNP rs1800629 was identified by Sanger sequencing. The correlations of the TNF-α-308G>A polymorphism with LVG and left ventricular function were analyzed by difference analysis and logistic regression. RESULTS: The chi-square test showed that there were differences in genotype distributions among the four groups (p = 0.033), such that the frequency of GA+AA genotypes was significantly higher in the concentric hypertrophy group than in the normal geometry group (p < 0.05). Independent sample T tests showed that the GA+AA genotypes had higher IVST, LVPWT, LVMI, E/e' values, and lower e' values than those of the GG genotype (p < 0.05). Logistic regression analysis showed that the TNF-α-308G>A polymorphism was independently correlated with eccentric hypertrophy (OR = 2.456, p = 0.047) and concentric hypertrophy (OR = 2.456, p = 0.047). CONCLUSION: In OSA patients, the TNF-α-308G>A polymorphism was linked to LVG and abnormal left ventricular diastolic function, suggesting that the TNF-α-308G>A polymorphism may have an important influence on LVG alterations.


Assuntos
Apneia Obstrutiva do Sono , Fator de Necrose Tumoral alfa , Humanos , Ventrículos do Coração/diagnóstico por imagem , Hipertrofia Ventricular Esquerda , Polimorfismo Genético , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/complicações , Fator de Necrose Tumoral alfa/genética
4.
J Clin Ultrasound ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804714

RESUMO

BACKGROUND: Recent studies have shown that right atrial (RA) function are important predictors of cardiovascular morbidity and mortality. However, the study data about RA phasic function in obstructive sleep apnea syndrome (OSAS) patients are scarce, especially based on the left ventricular geometry. So, we aimed to assess the influence of left ventricular geometry on RA phasic function in OSAS patients via a multimodal echocardiographic approach. METHODS: Total of 235 OSAS patients were enrolled in this cross-section study and underwent complete clinical, polysomnography, and echocardiography examinations. The OSAS patients were divided into four groups based on left ventricular mass index (LVMI) and relative wall thickness (RWT): normal geometry (NG), concentric remodeling (CR), concentric hypertrophy (CH), and eccentric hypertrophy (EH). RA phasic function was evaluated via multimodal echocardiography approach (two-dimensional echocardiography biplane method [2DE]; two-dimensional speckle-tracking echocardiography [2D-STE]; and three-dimensional echocardiography [3DE]). The multiple linear regression analysis was used to determine the relationship between left ventricular geometry and RA phasic function. RESULTS: The RA volume and indices increased from NG to CR to EH to CH. RA total emptying fraction and RA strain during systole decreased from NG to CR to EH to CH. RA passive emptying fraction and RA strain during early diastole similarly decreased. RA active emptying fraction and RA strain during late diastole also gradually increased similarly. In analyses that adjusted for gender, age, body mass index, systolic blood pressure, apnea-hypopnea index, LVMI, systolic pulmonary artery pressure, and right ventricular free wall thickness, CH was associated with RA reservoir and conduit function via 2DE area-length method, whereas CH and EH were associated with RA reservoir and conduit function via 2D-STE and 3DE method. Further, CH was associated with RA booster pump function via 2DE area-length method, 2D-STE, and 3DE method. CONCLUSION: The RA volumes and phasic function varied with left ventricular geometry via multimodal echocardiography approach. CH had the apparent negative effect on RA phasic function.

5.
J Clin Ultrasound ; 52(1): 20-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37883130

RESUMO

AIMS: Cardiac left ventricular hypertrophy (LVH) is the most common manifestation of heart involvement in Anderson-Fabry disease (AFD). Conventional cardiac imaging is not sensitive enough to detect early signs of LVH in AFD. It remains uncertain whether enzyme replacement therapy (ERT) can prevent LVH progression and improve myocardial function. This study aimed to assess the effectiveness of two-dimensional speckle tracking echocardiography (2D-STE) in early detection of cardiac involvement in AFD and monitoring the efficacy of agalsidase alfa and agalsidase beta therapy. METHODS AND RESULTS: Thirteen consecutive AFD patients and 12 healthy controls underwent standard transthoracic 2D, color Doppler, tissue Doppler echocardiography, and 2D strain analysis. Global longitudinal strain (GLS) and global circumferential strain (GCS) were measured. Diastolic strain rate (SR) was extracted. Compared to healthy subjects, AFD patients without LVH showed lower levels of GLS (p < 0.001) and SR (p = 0.01), while there was no difference in GCS (p = 0.82). Following treatment, apical circumferential strain (ACS) showed improvement (p = 0.01). CONCLUSION: In AFD patients without LVH, there was a decrease in global and segmental LS. Higher plasma Lyso-GL-3 concentrations were associated with elevated ACS values after ERT, indicating that ACS in AFD patients without LVH, albeit normal, is involved in early LV dysfunction.


Assuntos
Doença de Fabry , Disfunção Ventricular Esquerda , Humanos , Doença de Fabry/complicações , Doença de Fabry/diagnóstico por imagem , Doença de Fabry/tratamento farmacológico , Terapia de Reposição de Enzimas , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda
6.
Angew Chem Int Ed Engl ; 63(2): e202313796, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38015565

RESUMO

Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2 RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2 H4 ) selectivity with a Faraday efficiency (FE) of 67.3 % at -1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2 RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.

7.
Angew Chem Int Ed Engl ; : e202409563, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949085

RESUMO

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9% at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

8.
J Am Chem Soc ; 145(21): 11512-11517, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196054

RESUMO

Using bulk metals as catalysts to get high efficiency in electro-reduction of CO2 is ideal but challenging. Here, we report the coupling of bulk metal electrodes and a ternary ionic-liquid-based electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate/1-dodecyl-3-methylimidazolium tetrafluoroborate/MeCN to realize highly efficient electro-reduction of CO2 to CO. Over various bulk metal electrodes, the ternary electrolyte not only increases the current density but also suppresses the hydrogen evolution reaction to obtain a high Faradaic efficiency (FE) toward CO. FECO could maintain ∼100% over a wide potential range, and metal electrodes showed very high stability in the ternary electrolyte. It is demonstrated that the aggregation behavior of the ternary electrolyte and the arrangement of two kinds of IL cations with different chain lengths in the electrochemical double layer not only increase the wettability to electrode and CO2 adsorption but also extend the diffusion channel of H+, rendering the high current density and FECO.

9.
J Am Chem Soc ; 145(31): 17253-17264, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498730

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.

10.
Inorg Chem ; 62(10): 4385-4391, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857465

RESUMO

In recent years, the synthesis, crystalline structure, and applications of zeolite imidazole frameworks (ZIFs) have attracted extensive attention. Since the ZIF-L phase was synthesized, a new phase was observed during the heating process, but its crystal structure is unknown. The unknown new phase, which was named ZIF-L300 in this study, was confirmed again. In this study, the X-ray powder diffraction technique and Rietveld refinement were used to solve the crystalline structure of the unknown ZIF-L300 phase. The results demonstrate that ZIF-L300 has the same chemical formula (ZnC8N4H10) as in ZIF-8 and belongs to a hexagonal structure with a space group of P61. The lattice parameters have been determined as follows: a = b = 8.708(7) Å, c = 24.195(19) Å, α = ß = 90°, and γ = 120°. The X-ray absorption fine structure (XAFS) technique was also used to extract the local atomic structures. The in situ X-ray diffraction (XRD) technique was used to monitor the structural evolution of the as-prepared ZIF-L in a temperature range from room temperature to 600 °C. The results show that the sample experiences a change process from the initial ZIF-L orthorhombic phase (<210 °C), to the ZIF-L300 hexagonal phase (∼300 °C), then to an amorphous phase (∼390 °C), and finally to a zincite ZnO phase (>420 °C). These sorts of structural information are helpful to the application of ZIF materials and enrich the knowledge of the thermal stability of ZIF materials.

11.
J Clin Ultrasound ; 51(4): 603-609, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36444874

RESUMO

INTRODUCTION: To investigate the relationship of superoxide dismutase (SOD) and malondialdehyde (MDA) levels with left ventricular geometry (LVG) and function in patients with primary hypertension (PH). METHODS: A total of 222 PH patients and 25 healthy control (HC)s were enrolled in this study. All subjects underwent echocardiography and blood biochemical examination. PH patients were divided into four groups based on Ganau classification: normal geometry (NG) group, concentric remodeling (CR) group, eccentric hypertrophy (EH) group, and concentric hypertrophy (CH) group. Pearson correlation analysis and logistic regression analysis were used to analyze the relationship between SOD and MDA with left ventricular structure and function. RESULTS: Compared to the HC, NG and CR groups, MDA level was higher while SOD level was lower in the EH and CH groups (all P < 0.001). SOD level was negatively correlated with IVSd, LVDd, LVPW, and global longitudinal strain (GLS), but positively correlated with LVEF. MDA level was positively correlated with IVSd, LVPW, and GLS, while negatively correlated with e'/a' and LVEF. SOD and MDA were independently associated with CR (OR = 0.970, P = 0.003; OR = 1.204, P = 0.043), EH (OR = 0.879, P < 0.001; OR = 2.197, P = 0.001) and CH (OR = 0.796, P < 0.001; OR = 3.669, P < 0.001). CONCLUSION: The SOD and MDA levels were correlated with LVG and function in PH patients. SOD and MDA may be important influencing factors of LVG change.


Assuntos
Hipertensão , Humanos , Ecocardiografia , Hipertensão Essencial , Ventrículos do Coração/diagnóstico por imagem , Hipertensão/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda , Superóxido Dismutase/metabolismo
12.
Angew Chem Int Ed Engl ; 62(43): e202307952, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37665252

RESUMO

The renewable-energy-powered electroreduction of nitrate (NO3 - ) to ammonia (NH3 ) has garnered significant interest as an eco-friendly and promising substitute for the Haber-Bosch process. However, the sluggish kinetics hinders its application at a large scale. Herein, we first calculated the N-containing species (*NO3 and *NO2 ) binding energy and the free energy of the hydrogen evolution reaction over Cu with different metal dopants, and it was shown that Zn was a promising candidate. Based on the theoretical study, we designed and synthesized Zn-doped Cu nanosheets, and the as-prepared catalysts demonstrated excellent performance in NO3 - -to-NH3 . The maximum Faradaic efficiency (FE) of NH3 could reach 98.4 % with an outstanding yield rate of 5.8 mol g-1 h-1 , which is among the best results up to date. The catalyst also had excellent cycling stability. Meanwhile, it also presented a FE exceeding 90 % across a wide potential range and NO3 - concentration range. Detailed experimental and theoretical studies revealed that the Zn doping could modulate intermediates adsorption strength, enhance NO2 - conversion, change the *NO adsorption configuration to a bridge adsorption, and decrease the energy barrier, leading to the excellent catalytic performance for NO3 - -to-NH3 .

13.
J Synchrotron Radiat ; 29(Pt 2): 424-430, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254305

RESUMO

The microminiaturization of detectors used to record the intensity of X-ray beams is very favorable for combined X-ray experimental techniques. In this paper, chemical-vapor-deposited (CVD) polycrystalline diamond film was used to fabricate a micro-detector owing to its well controlled size, good thermostability, and appropriate conductivity. The preparation process and the main components of the CVD diamond micro-detector are described. The external dimensions of the packaged CVD diamond micro-detector are 15 mm × 7.8 mm × 5.8 mm. To demonstrate the performance of the detector, K-edge X-ray absorption fine-structure (XAFS) spectra of Cr, Fe, Cu, and Se foils were collected using the CVD diamond micro-detector and routine ion chamber. These XAFS measurements were performed at beamline 1W2B of Beijing Synchrotron Radiation Facility, covering an energy range from 5.5 to 13.5 keV. By comparison, it can be seen that the CVD diamond micro-detector shows a more excellent performance than the routine ion-chamber in recording these XAFS spectra. The successful application of the CVD diamond micro-detector in XAFS measurements shows its feasibility in recording X-ray intensity.

14.
Inorg Chem ; 61(40): 16093-16102, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154022

RESUMO

The formation and self-assembly mechanisms of nanomaterials are of great significance for the preparation and application of materials. In this study, the orientationally aggregated CoOOH nanosheets and the self-assembled strings of CoOOH nanodiscs were prepared by hydrothermal method. The formation and self-assembly mechanisms of CoOOH nanodiscs were investigated by XRD, XPS, DLS, TEM, and SEM techniques, as well as DFT calculations. The results show that the formation process of the stacked CoOOH nanodiscs was driven by surface energy and can be divided into four steps: nucleation and growth of CoOOH primary nanosheets; oriented attachment of CoOOH nanosheets; self-assembly of CoOOH nanodiscs; and aggregation of strings of CoOOH nanodiscs. This study contributes meaningfully to the controllable preparation of CoOOH nanomaterials.

15.
Inorg Chem ; 61(5): 2669-2678, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073051

RESUMO

The formation mechanism of nanoparticles is of great significance for the controllable synthesis, structural design, and performance optimization of nanomaterials. In this paper, an economical hydrothermal method was used to synthesize zinc oxide (ZnO) nanorods. X-ray diffraction, X-ray absorption fine structure, and small-angle X-ray scattering techniques were used to probe the structural changes. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphologies of the products. A self-designed in situ temperature-pressure sample cell was used to control the hydrothermal conditions. The results demonstrate that an unknown intermediate phase, Zn(HCO3)2·H2O, was first formed at 50 °C, having a morphology of nanoflakes with a average thickness of about 35 nm. The intermediate phase Zn(HCO3)2·H2O was determined to have a monoclinic structure with space group P1211 and the following lattice parameters: a = 11.567 Å, b = 3.410 Å, c = 5.358 Å, ß = 96.0011°, and Z = 2. After a hydrothermal temperature of 140 °C, CO2 and H2O were evaporated from the Zn(HCO3)2·H2O intermediate product and the ZnO nanorods with a wurtzite structure were formed. The final ZnO nanorods have an average diameter of about 45 nm and an average length of about 2 µm. The axial direction of the ZnO nanorods is the [001] crystallographic direction. By virtue of understanding the formation mechanism, this work is helpful for the controllable synthesis of ZnO nanoparticles.

16.
Echocardiography ; 39(2): 286-293, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060176

RESUMO

OBJECTIVE: To assess the relationship of interleukin-6 (IL-6) and C-reactive protein (CRP) levels with left ventricular geometry (LVG) and function in patients with obstructive sleep apnea syndrome (OSAS) and pre-hypertension. METHODS: A total of 458 patients were assigned into four groups: normal geometry (NG), concentric remodeling (CR), eccentric hypertrophy (EH), and concentric hypertrophy (CH). Pearson correlation and multivariate logistic regression analyses were used to determine the correlation between IL-6, CRP, and clinical, polysomnographic, and biochemical parameters with LVG and function. RESULTS: IL-6 and CRP levels were higher in the EH and CH groups than those in the NG and CR groups. The results of the Pearson correlation analysis showed that IL-6 level was positively correlated with the E/e' ratio and peak systolic pulmonary venous reverse velocity (PVa) duration time (PVaD), while negatively correlated with the E/A ratio, s', and left ventricular ejection fraction (LVEF). CRP level was positively correlated with A-wave duration time (AD), peak systolic pulmonary venous flow velocity (PVs), PVa and PVaD, while negatively correlated with the E/A ratio. The results of the multivariate logistic regression analysis revealed that IL-6 and CRP levels were correlated with EH (ß = 1.213, odds ratio [OR] = 3.363, p < 0.001; ß = 1.258, OR = 3.518, p < 0.001) and CH (ß = .938, OR = 2.555, p = 0.008; ß = 1.239, OR = 3.454, p < 0.001). CONCLUSION: IL-6 and CRP levels are associated with LVG and function, suggesting that IL-6 and CRP levels are involved in OSAS and pre-hypertension, leading to abnormal left ventricular structure and function.


Assuntos
Hipertensão , Pré-Hipertensão , Apneia Obstrutiva do Sono , Proteína C-Reativa , Humanos , Hipertensão/complicações , Hipertrofia Ventricular Esquerda , Interleucina-6 , Pré-Hipertensão/complicações , Apneia Obstrutiva do Sono/complicações , Volume Sistólico , Função Ventricular Esquerda
17.
Echocardiography ; 39(12): 1589-1600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36376258

RESUMO

OBJECTIVES: To investigate relationships between hypersensitive C-reactive protein (hs-CRP), tumor necrosis factor -α (TNF-α), interleukin-17A (IL-17A), and interferon -γ (IFN-γ), with left ventricular geometry (LVG) and function in patients with primary hypertension (PHT). METHODS: A total of 396 PHT patients were assigned into four groups: Normal Geometry (NG), Concentric Remodeling (CR), Eccentric Hypertrophy (EH), and Concentric Hypertrophy (CH). The correlation between hs-CRP, TNF-α, IL-17A, IFN-γ, and clinical, biochemical parameters were analyzed by Pearson correlation analysis and Logistic regression. Receiver Operating Characteristic (ROC) curve was used to analyze the clinical values of hs-CRP, TNF-α, IL-17A, and IFN-γ for abnormal LVG prediction. RESULTS: NG, CR, EH, and CH group all presented increasingly higher levels of Hs-CRP, TNF-α, IL-17A, and IFN-γ, and the increase was the most prominent in the CH group. Pearson correlation analysis showed that hs-CRP, IL-17A, and IFN-γ were all positively correlated with LASct. Hs-CRP, TNF-α, and IL-17A were all negatively correlated with GLS, LASr, and LAScd. However, IFN-γ was only negatively correlated with GLS and LAScd. Logistic regression analysis showed that hs-CRP and IL-17A were independently correlated with CR; hs-CRP, TNF-α, IFN-γ, and IL-17A were independently correlated with EH and CH. ROC curve analysis showed that the area under the curve (AUC) of hs-CRP was 0.816. When the optimal diagnostic threshold of hs-CRP was 3.04 mg/L, the sensitivity and specificity of the abnormal LVG were 72.1% and 81.5%, respectively. CONCLUSION: In PHT patients, hs-CRP, TNF-α, IL-17A, and IFN-γ were correlated with abnormal LVG and left ventricular function, suggesting that inflammatory cytokines may be involved in the process of PHT-induced abnormal left ventricular structure and function. In addition, hs-CRP can be used as a health screening index for patients at high risk of abnormal LVG.


Assuntos
Citocinas , Interleucina-17 , Humanos , Proteína C-Reativa , Fator de Necrose Tumoral alfa
18.
J Am Chem Soc ; 142(39): 16538-16545, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32931700

RESUMO

The separation of actinides has a vital place in nuclear fuel reprocessing, recovery of radionuclides, and remediation of environmental contamination. Here we propose a new paradigm of nanocluster-based actinide separation, namely, nanoextraction, that can achieve efficient sequestration of uranium in an unprecedented form of giant coordination nanocages using a cone-shaped macrocyclic pyrogallol[4]arene as the extractant. The U24-based hexameric pyrogallol[4]arene nanocages with distinctive [U2(PG)2] binuclear units (PG = pyrogallol) that rapidly assembled in situ in monophasic solvent were identified by single-crystal X-ray diffraction, MALDI-TOF mass spectrometry, NMR spectroscopy, and small-angle X-ray and neutron scattering. Comprehensive biphasic extraction studies showed that this novel separation strategy has enticing advantages such as fast kinetics, high efficiency, and good selectivity over lanthanides, thereby demonstrating its potential for efficient separation of actinide ions.

19.
Inorg Chem ; 58(10): 7054-7061, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31063358

RESUMO

The formation process and product control are very important in material synthesis. In this study, a facile one-pot hydrothermal method was used to prepare Co3O4 and CoOOH. H2O2 was used to modulate the formation process and control the final product by changing its concentration. The crystalline structures and morphologies of the as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, and scanning electron microscopy (SEM) techniques. It was found that the concentration of H2O2 influenced not only the phase of the final products but also their morphologies. The influences of H2O2 concentration on the precursor formation and the reaction path have been revealed. At a low concentration of H2O2 (5 wt %), the formed precursor is Co(CO3)0.5(OH)·0.11H2O, which can be directly transformed into Co3O4 upon increasing the hydrothermal time. At a medium concentration (15-20 wt %), the formed precursor and the final product are all CoOOH. At a high concentration (30 wt %), the formed precursor is CoOOH, and the final product is Co3O4. H2O2 plays the role of oxidant agent at the initial stage or reducing agent at the subsequent stage. This study offers a H2O2-concentration modulating method for the formation of Co3O4 and CoOOH.

20.
Chemistry ; 24(3): 585-589, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29178592

RESUMO

Using porous materials to cope with environmental issues is promising but remains a challenge especially for removing the radioactive vapor wastes in fission because of harsh adsorption conditions. Here we report a new, stable covalent organic framework (COF) as a porous platform for removing iodine vapor-a major radioactive fission waste. The three-dimensional COF consists of a diamond topology knotted by adamantane units, creates ordered one-dimensional pores and are highly porous. The COF enables the removal of iodine vapor via charge transfer complex formation with the pore walls to achieve exceptional capacity. Moreover, the 3D COF is "soft" to trigger structural fitting to iodine while retaining connectivity and enables cycle use for many times while retaining high uptake capacity. These results set a new benchmark for fission waste removal and suggest the great potential of COFs as a designable porous material for challenging world-threatening pollution issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA