Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nat Immunol ; 23(12): 1687-1702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456739

RESUMO

Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.


Assuntos
Vacina BCG , Macrófagos Alveolares , Imunidade Treinada , Pulmão , Vacinação , Imunidade Inata
3.
Cell ; 175(6): 1634-1650.e17, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30433869

RESUMO

Innate immune memory is an emerging area of research. However, innate immune memory at major mucosal sites remains poorly understood. Here, we show that respiratory viral infection induces long-lasting memory alveolar macrophages (AMs). Memory AMs are programed to express high MHC II, a defense-ready gene signature, and increased glycolytic metabolism, and produce, upon re-stimulation, neutrophil chemokines. Using a multitude of approaches, we reveal that the priming, but not maintenance, of memory AMs requires the help from effector CD8 T cells. T cells jump-start this process via IFN-γ production. We further find that formation and maintenance of memory AMs are independent of monocytes or bone marrow progenitors. Finally, we demonstrate that memory AMs are poised for robust trained immunity against bacterial infection in the lung via rapid induction of chemokines and neutrophilia. Our study thus establishes a new paradigm of immunological memory formation whereby adaptive T-lymphocytes render innate memory of mucosal-associated macrophages.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Pulmão/citologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Linfócitos T Auxiliares-Indutores/citologia
5.
Proc Natl Acad Sci U S A ; 121(36): e2405168121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39196620

RESUMO

Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.

6.
Phys Rev Lett ; 132(3): 036502, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307085

RESUMO

The recently discovered nickelate superconductor La_{3}Ni_{2}O_{7} has a high transition temperature near 80 K under pressure, providing an additional avenue for exploring unconventional superconductivity. Here, with state-of-the-art tensor-network methods, we study a bilayer t-J-J_{⊥} model for La_{3}Ni_{2}O_{7} and find a robust s-wave superconductive (SC) order mediated by interlayer magnetic couplings. Large-scale density matrix renormalization group calculations find algebraic pairing correlations with Luttinger parameter K_{SC}≲1. Infinite projected entangled-pair state method obtains a nonzero SC order directly in the thermodynamic limit, and estimates a strong pairing strength Δ[over ¯]_{z}∼O(0.1). Tangent-space tensor renormalization group simulations elucidate the temperature evolution of SC pairing and further determine a high SC temperature T_{c}^{*}/J∼O(0.1). Because of the intriguing orbital selective behaviors and strong Hund's rule coupling in the compound, t-J-J_{⊥} model has strong interlayer spin exchange (while negligible interlayer hopping), which greatly enhances the SC pairing in the bilayer system. Such a magnetically mediated pairing has also been observed recently in the optical lattice of ultracold atoms. Our accurate and comprehensive tensor-network calculations reveal a robust SC order in the bilayer t-J-J_{⊥} model and shed light on the pairing mechanism of the high-T_{c} nickelate superconductor.

8.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685243

RESUMO

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Ligação Proteica , Heterópteros/metabolismo , Heterópteros/genética
9.
Artigo em Zh | MEDLINE | ID: mdl-39212067

RESUMO

Objective To investigate the effects of sakuranetin (SK) on motor functions in the mouse model of spinal cord injury (SCI) and decipher the mechanism.Methods Fifty-four C57BL/6J mice were randomized into sham,SCI,and SK groups.The mice in the sham group underwent only laminectomy at T9,while those in the SCI and SK groups were subjected to spinal cord contusion injury at T9.Behavioral tests were conducted at different time points after surgery to evaluate the motor functions of mice in each group.The pathological changes in the tissue were observed to assess the extent of SCI in each group.The role and mechanism of SK in SCI were predicted by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses.Reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence were employed to evaluate the inflammation and activation of microglia in SCI mice.BV2 cells in vitro were classified into control (Con),lipopolysaccharide (LPS),and LPS+SK groups.The effects of SK intervention on the release of inflammatory cytokines and the activation of BV2 cells were evaluated.Furthermore,the phosphatidylinositol-3-kinase(PI3K)/protein kinase B (AKT) signaling pathway activator insulin-like growth factor-1 (IGF-1) was used to treat the SK-induced BV2 cells in vitro (SK+IGF-1 group),and SK was used to treat the IGF-1-induced BV2 cells in vitro (IGF-1+SK group).Western blotting was conducted for molecular mechanism validation.Results Behavioral tests and histological staining results showed that compared with the SCI group,the SK group exhibited improved motor abilities and reduced area of damage in the spinal cord tissue (all P<0.001).The GO enrichment analysis predicted that SK may be involved in the inflammation following SCI.The KEGG enrichment analysis predicted that SK regulated the PI3K/Akt pathway to exert the neuroprotective effect.The results from in vitro and in vivo experiments showed that SK lowered the levels of tumor necrosis factor-α,interleukin-6,and interleukin-1ß and inhibited the activation of microglia (all P<0.05).The results of Western blotting showed that SK down-regulated the phosphorylation levels of PI3K and Akt (all P<0.001) and inhibited the IGF-1-induced elevation of PI3K and Akt phosphorylation levels (all P<0.001).Conversely,IGF-1 had the opposite effects (P=0.001,P<0.001).The results of reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence showed that the SK+IGF-1 group had higher levels of inflammatory cytokines and more activated microglia than the SK group(all P<0.05).Conclusion SK may suppress the activation of the PI3K/Akt pathway to inhibit the inflammation mediated by SCI-induced activation of microglia,ameliorate the pathological damage of the spinal cord tissue,and promote the recovery of motor functions in SCI mice.

10.
Immunity ; 40(4): 554-68, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24726877

RESUMO

Aspirin gained tremendous popularity during the 1918 Spanish Influenza virus pandemic, 50 years prior to the demonstration of their inhibitory action on prostaglandins. Here, we show that during influenza A virus (IAV) infection, prostaglandin E2 (PGE2) was upregulated, which led to the inhibition of type I interferon (IFN) production and apoptosis in macrophages, thereby causing an increase in virus replication. This inhibitory role of PGE2 was not limited to innate immunity, because both antigen presentation and T cell mediated immunity were also suppressed. Targeted PGE2 suppression via genetic ablation of microsomal prostaglandin E-synthase 1 (mPGES-1) or by the pharmacological inhibition of PGE2 receptors EP2 and EP4 substantially improved survival against lethal IAV infection whereas PGE2 administration reversed this phenotype. These data demonstrate that the mPGES-1-PGE2 pathway is targeted by IAV to evade host type I IFN-dependent antiviral immunity. We propose that specific inhibition of PGE2 signaling might serve as a treatment for IAV.


Assuntos
Dinoprostona/metabolismo , Vírus da Influenza A/fisiologia , Interferon Tipo I/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Dinoprostona/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética , Interferon Tipo I/genética , Oxirredutases Intramoleculares/genética , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Infecções por Orthomyxoviridae/imunologia , Prostaglandina-E Sintases , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Linfócitos T/imunologia , Linfócitos T/virologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA