RESUMO
Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.
Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Simbiose , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismoRESUMO
Stem cell transplantation has demonstrated efficacy in treating neurological disorders by generating functional cells and secreting beneficial factors. However, challenges remain for current cell suspension injection therapy, including uncontrollable cell distribution, the potential for tumor formation, and limited ability to treat spatial defects. Therefore, implants with programmable cell development, tailored 3D structure, and functionalized biomaterials have the potential to both control cell distribution and reduce or heal spatial defects. Here, a biomimetic material system comprising gelatin, alginate, and fibrinogen has been developed for neural progenitor cell constructs using 3D printing. The resulting constructs exhibit excellent formability, stability, and developmental functions in vitro, as well as biocompatibility and integration into the hippocampus in vivo. The controllability, reproducibility, and material composition of the constructs show potential for use in personalized stem cell-based therapies for defective neurological disorders, neural development research, disease modeling, and organoid-derived intelligent systems.
RESUMO
Diatoms are dominant marine algae and contribute around a quarter of global primary productivity, the success of which is largely attributed to their photosynthetic capacity aided by specific fucoxanthin chlorophyll-binding proteins (FCPs) to enhance the blue-green light absorption under water. We purified a photosystem II (PSII)-FCPII supercomplex and a trimeric FCP from Cyclotella meneghiniana (Cm) and solved their structures by cryo-electron microscopy (cryo-EM). The structures reveal detailed organizations of monomeric, dimeric and trimeric FCP antennae, as well as distinct assemblies of Lhcx6_1 and dimeric FCPII-H in PSII core. Each Cm-PSII-FCPII monomer contains an Lhcx6_1, an FCP heterodimer and other three FCP monomers, which form an efficient pigment network for harvesting energy. More diadinoxanthins and diatoxanthins are found in FCPs, which may function to quench excess energy. The trimeric FCP contains more chlorophylls c and fucoxanthins. These diversified FCPs and PSII-FCPII provide a structural basis for efficient light energy harvesting, transfer, and dissipation in C. meneghiniana.
Assuntos
Diatomáceas , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Diatomáceas/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação à Clorofila/química , Fotossíntese , Complexos de Proteínas Captadores de Luz/metabolismoRESUMO
Diatom is an important group of marine algae and contributes to around 20% of the global photosynthetic carbon fixation. Photosystem I (PSI) of diatoms is associated with a large number of fucoxanthin-chlorophyll a/c proteins (FCPIs). We report the structure of PSI-FCPI from a diatom Chaetoceros gracilis at 2.38 Å resolution by single-particle cryo-electron microscopy. PSI-FCPI is a monomeric supercomplex consisting of 12 core and 24 antenna subunits (FCPIs), and 326 chlorophylls a, 34 chlorophylls c, 102 fucoxanthins, 35 diadinoxanthins, 18 ß-carotenes and some electron transfer cofactors. Two subunits designated PsaR and PsaS were found in the core, whereas several subunits were lost. The large number of pigments constitute a unique and huge network ensuring efficient energy harvesting, transfer and dissipation. These results provide a firm structural basis for unraveling the mechanisms of light-energy harvesting, transfer and quenching in the diatom PSI-FCPI, and also important clues to evolutionary changes of PSI-LHCI.
Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Subunidades Proteicas/químicaRESUMO
Diatoms play important roles in global primary productivity and biogeochemical cycling of carbon, in part owing to the ability of their photosynthetic apparatus to adapt to rapidly changing light intensity. We report a cryo-electron microscopy structure of the photosystem II (PSII)-fucoxanthin (Fx) chlorophyll (Chl) a/c binding protein (FCPII) supercomplex from the centric diatom Chaetoceros gracilis The supercomplex comprises two protomers, each with two tetrameric and three monomeric FCPIIs around a PSII core that contains five extrinsic oxygen-evolving proteins at the lumenal surface. The structure reveals the arrangement of a huge pigment network that contributes to efficient light energy harvesting, transfer, and dissipation processes in the diatoms.
Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/enzimologia , Complexo de Proteína do Fotossistema II/química , Carotenoides , Microscopia Crioeletrônica , Multimerização ProteicaRESUMO
Diatoms are abundant photosynthetic organisms in aquatic environments and contribute 40% of its primary productivity. An important factor that contributes to the success of diatoms is their fucoxanthin chlorophyll a/c-binding proteins (FCPs), which have exceptional light-harvesting and photoprotection capabilities. Here, we report the crystal structure of an FCP from the marine diatom Phaeodactylum tricornutum, which reveals the binding of seven chlorophylls (Chls) a, two Chls c, seven fucoxanthins (Fxs), and probably one diadinoxanthin within the protein scaffold. Efficient energy transfer pathways can be found between Chl a and c, and each Fx is surrounded by Chls, enabling the energy transfer and quenching via Fx highly efficient. The structure provides a basis for elucidating the mechanisms of blue-green light harvesting, energy transfer, and dissipation in diatoms.