RESUMO
BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.
Assuntos
Doença da Válvula Aórtica Bicúspide , Cardiopatias Congênitas , Doenças das Valvas Cardíacas , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais/metabolismo , Desintegrinas/genética , Desintegrinas/metabolismo , Hibridização in Situ Fluorescente , Valva Aórtica/metabolismo , Cardiopatias Congênitas/complicações , Matriz Extracelular/metabolismo , Trombospondinas/metabolismo , Metaloproteases/metabolismo , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismoRESUMO
Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.
Assuntos
Envelhecimento/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Curcumina/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/psicologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologiaRESUMO
BACKGROUND: Calcific aortic valve stenosis (CAVS) is one of the most challenging heart diseases in clinical with rapidly increasing prevalence. However, study of the mechanism and treatment of CAVS is hampered by the lack of suitable, robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposition. Here, we aim to establish a mouse model to mimic the development and features of CAVS. METHODS: The model was established via aortic valve wire injury (AVWI) combined with vitamin D subcutaneous injected in wild type C57/BL6 mice. Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradient. Histopathological specimens were collected and examined in respect of valve thickening, calcium deposition, collagen accumulation, osteogenic differentiation and inflammation. RESULTS: Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time dependent manner and tended to be stable at 28 days. Compared with the sham group, simple AVWI or the vitamin D group, the hybrid model group showed typical pathological features of CAVS, including hemodynamic alterations, increased aortic valve thickening, calcium deposition, collagen accumulation at 28 days. In addition, osteogenic differentiation, fibrosis and inflammation, which play critical roles in the development of CAVS, were observed in the hybrid model. CONCLUSIONS: We established a novel mouse model of CAVS that could be induced efficiently, robustly and economically, and without genetic intervention. It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effective pharmacological targets.
Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/etiologia , Calcinose/patologia , Valva Aórtica/patologia , Camundongos , Masculino , Vitamina D , EcocardiografiaRESUMO
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Assuntos
Estenose da Valva Aórtica , Calcinose , Camundongos , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/tratamento farmacológico , Osteogênese , Calcinose/tratamento farmacológico , Calcinose/metabolismo , Células Cultivadas , Fenômenos MagnéticosRESUMO
AIMS: The incidence of calcific aortic valve disease (CAVD) has risen over the last decade and is expected to continue rising; however, pharmacological approaches have proven ineffective. In this study, we evaluated the role and underlying mechanisms of human antigen R (HuR)-mediated post-transcriptional regulation in CAVD. METHODS AND RESULTS: We found that HuR was significantly upregulated in human calcified aortic valves and primary aortic valvular interstitial cells (VICs) following osteogenic stimulation. Subsequent functional studies revealed that HuR silencing ameliorated calcification both in vitro and in vivo. For the first time, we demonstrated that HuR directly interacted with the transcript of phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A), which mediates phosphatidylinositol signalling, facilitates autophagy, and acts as an mRNA stabilizer. HuR positively modulated PIP4K2A expression at the post-transcriptional level and consequently influenced the AKT/mTOR/ATG13 pathway to regulate autophagy and CAVD progression. CONCLUSION: Our study provides new insights into the post-transcriptional regulatory role of HuR in modulating autophagy-positive factors to regulate the pathogenesis of CAVD. Our findings highlight the potential of HuR as an innovative therapeutic target in CAVD treatment.
Assuntos
Antígenos , Estenose da Valva Aórtica , Calcinose , Processamento Pós-Transcricional do RNA , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos/fisiologia , Antígenos/uso terapêutico , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismoRESUMO
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Assuntos
Técnicas de Cultura de Células , Tinta , Engenharia Tecidual/métodos , Comunicação Celular , Técnicas Analíticas Microfluídicas , Técnicas de Cocultura , Movimento Celular , Magnetismo , Humanos , Técnicas de Cultura de Células/métodosRESUMO
Heart valves have extraordinary fatigue resistance which beat ≈3 billion times in a lifetime. Bioprosthetic heart valves (BHVs) made from fixed heteroplasm that are incrementally used in heart valve replacement fail to sustain the expected durability due to thrombosis, poor endothelialization, inflammation, calcification, and especially mechanical damage induced biocompatibility change. No effective strategy has been reported to conserve the biological properties of BHV after long-term fatigue test. Here, a double-network tough hydrogel is introduced, which interpenetrate and anchor into the matrix of decellularized porcine pericardium (dCell-PP) to form robust and stable conformal coatings and reduce immunogenicity. The ionic crosslinked hyaluronic acid (HA) network mimics the glycocalyx on endothelium which improves antithrombosis and accelerates endothelialization; the chemical crosslinked hydrophilic polyacrylamide (PAAm) network further enhances antifouling properties and strengthens the shielding hydrogels and their interaction with dCell-PP. In vitro and rabbit ex vivo shunt assay demonstrate great hemocompatibility of polyacrylamide/HA hydrogel hybrid PP (P/H-PP). Cell experiments and rat subcutaneous implantation confirm satisfactory endothelialization, biocompatibility, and anticalcification properties. For hydrodynamic experiment, P/H-PP gains full mark at different flow conditions and sustains excellent biomechanical and biological properties after 200 000 000 cycles. P/H double-network hydrogel armoring dCell-PP is a promising progress to extend BHV durability for clinical implantation therapy.
Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Valvas Cardíacas , Hidrogéis/química , Hidrogéis/farmacologia , Pericárdio/química , Coelhos , Ratos , SuínosRESUMO
There are currently no pharmacological therapies for calcific aortic valve disease (CAVD). Here, we evaluated the role of protein tyrosine phosphatase 1B (PTP1B) inhibition in CAVD. Up-regulation of PTP1B was critically involved in calcified human aortic valve, and PTP1B inhibition had beneficial effects in preventing fibrocalcific response in valvular interstitial cells and LDLR-/- mice. In addition, we reported a novel function of PTP1B in regulating mitochondrial homeostasis by interacting with the OPA1 isoform transition in valvular interstitial cell osteogenesis. Thus, these findings have identified PTP1B as a potential target for preventing aortic valve calcification in patients with CAVD.
RESUMO
Background: The poor survival rates of transplanted mesenchymal stem cells (MSCs) in harsh microenvironments impair the efficacy of MSCs transplantation in myocardial infarction (MI). Extrinsic apoptosis pathways play an important role in the apoptosis of transplanted MSCs, and Fas apoptosis inhibitory molecule (FAIM) is involved in regulation of the extrinsic apoptosis pathway. Thus, we aimed to explore whether FAIM augmentation protects MSCs against stress-induced apoptosis and thereby improves the therapeutic efficacy of MSCs. Methods: We ligated the left anterior descending coronary artery (LAD) in the mouse heart to generate an MI model and then injected FAIM-overexpressing MSCs (MSCsFAIM) into the peri-infarction area in vivo. Moreover, FAIM-overexpressing MSCs were challenged with oxygen, serum, and glucose deprivation (OGD) in vitro, which mimicked the harsh microenvironment that occurs in cardiac infarction. Results: FAIM was markedly downregulated under OGD conditions, and FAIM overexpression protected MSCs against OGD-induced apoptosis. MSCsFAIM transplantation improved cell retention, strengthened angiogenesis, and ameliorated heart function. The antiapoptotic effect of FAIM was mediated by cellular-FLICE inhibitory protein (c-FLIP), and FAIM augmentation improved the protein expression of c-FLIP by reducing ubiquitin-proteasome-dependent c-FLIP degradation. Furthermore, FAIM inhibited the activation of JNK, and treatment with the JNK inhibitor SP600125 abrogated the reduction in c-FLIP protein expression caused by FAIM silencing. Conclusions: Overall, these results indicated that FAIM curbed the JNK-mediated, ubiquitination-proteasome-dependent degradation of c-FLIP, thereby improving the survival of transplanted MSCs and enhancing their efficacy in MI. This study may provide a novel approach to strengthen the therapeutic effect of MSC-based therapy.
RESUMO
An aging population and a rapid increase in the incidence of degenerative valve diseases have led to greater use of bioprosthetic heart valves (BHVs). The durability of glutaraldehyde cross-linked bioprostheses currently available for clinical use is poor due to calcification, coagulation, and degradation. Decellularization can partially reduce calcification by removal of xenogenic cells, but can also lead to thrombosis, which can be addressed by further surface modification. The natural sulfated polysaccharide ulvan possesses antithrombotic and anti-inflammatory properties, and can behave as a heparinoid to immobilize proteins through their heparin binding sites. VE-cadherin antibody and the Arg-Glu-Asp-Val (REDV) peptide can facilitate selective endothelial cell attachment, adhesion and proliferation. In this study, we functionalized decellularized porcine pericardium (DPP) with ulvan, REDV, and VE-cadherin antibody (U-R-VE). Ulvan was covalently modified to act as a protective coating and spacer for VE-cadherin antibody, and to immobilize REDV. In in vitro tests, we found that functionalization significantly and selectively promoted adhesion and growth of endothelial cells while reducing platelet adhesion, inflammation, and in vitro calcification of DPPs. In an in vivo subdermal implantation model, U-R-VE modified DPP exhibited greater endothelialization potential and biocompatibility compared with unmodified pericardium. Thus, U-R-VE modification provides a promising solution to the problem of preparing BHVs with enhanced endothelialization potential.
Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Antígenos CD , Caderinas , Células Endoteliais , Valvas Cardíacas , Polissacarídeos , SuínosRESUMO
BACKGROUND: Poor cell survival after transplantation restricts the therapeutic potential of mesenchymal stem cell (MSC) transplantation into infarcted hearts, particularly in older individuals. TPP1, a component of the shelterin complex that is involved in telomere protection, is highly expressed in young MSCs but declines in aged ones. Here, we explore whether TPP1 overexpression in aged mouse MSCs improves cell viability in vivo and in vitro. METHODS: Aged mouse MSCs overexpressing TPP1 were injected into the peri-infarct area of the mouse heart after left anterior descending coronary artery ligation. In parallel, to evaluate cellular-level effects, H2O2 was applied to MSCs in vitro to mimic the microenvironment of myocardial injury. RESULTS: In vivo, the transplantation of aged MSCs overexpressing TPP1 resulted in improved cell survival, enhanced cardiac function, and reduced fibrosis compared to unmodified aged MSCs. In vitro, TPP1 overexpression protected aged MSCs from H2O2-induced apoptosis and enhanced DNA double-strand break (DSB) repair. In addition, the phosphorylation of AKT and the key DSB repair protein MRE11 were both significantly upregulated in aged MSCs that overexpressed TPP1. CONCLUSIONS: Our results reveal that TPP1 can enhance DNA repair through the AKT/MRE11 pathway, thereby improving the therapeutic effects of aged MSC transplantation and offering significant potential for the clinical application of autologous transplantation in aged patients.