Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Biochem ; 125(1): 100-114, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031891

RESUMO

Osteoporosis (OP) is a bone remodeling disease characterized by an imbalance between bone resorption and formation. Osteoclasts are the primary therapeutic targets for treating bone destruction. Koumine (KM), the most bioactive component in Gelsemium alkaloids, exhibits antitumor, immunosuppressive, anti-inflammatory, and analgesic properties. However, the effects of bone loss have not been well studied. This study conducted in vitro and in vivo verification experiments on KM. The results showed that KM inhibited bone resorption and tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts development by mature osteoclasts in a dose-dependent manner. Moreover, KM prevented OVX-induced OP in vivo and potentially inhibited ubiquitination, a process closely related to various biological activities, including protein interaction, transcription, and transmembrane signal transduction regulation, especially within the nuclear factor-κB (NF-κB) pathway. Previous studies have demonstrated that several proteins ubiquitination promotes osteoclastogenesis, our study indicated that KM inhibits early NF-κB activation and receptor activator of NF-κB ligand induced ubiquitination, a critical factor in osteoclast differentiation. In conclusion, our research suggests that KM holds potential as an effective therapeutic agent for OP.


Assuntos
Reabsorção Óssea , Alcaloides Indólicos , Osteoporose , Feminino , Humanos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/prevenção & controle , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo , Diferenciação Celular
2.
J Neurosci ; 40(13): 2644-2662, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32066583

RESUMO

Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gliose/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Gliose/genética , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Proteínas de Sinalização YAP
3.
Artigo em Inglês | MEDLINE | ID: mdl-38856915

RESUMO

Osteoarthritis (OA) is a common joint disorder affecting about 7% of the global population, primarily characterized by the gradual loss of articular cartilage. This degeneration results from local inflammation, matrix depletion, and direct cartilage damage. A critical element in this process is the activation of the stimulator of the interferon genes (STING) pathway. Emerging evidence highlights its potential as a therapeutic target, with natural products showing promise as inhibitors. Our study centers on Acacetin, a basic unit of polyketides known for its anti-inflammatory properties. Prior research has highlighted its potential interaction with STING based on the structure. Thus, this study aimed to assess the effectiveness of Acacetin as a STING inhibitor and its protective role against OA. In vitro experiments showed that Acacetin pretreatment not only mitigated interleukin-1ß (IL-1ß)-induced cytotoxicity but also decreased the inflammatory response and degeneration in chondrocytes stimulated IL-1ß. In vivo studies revealed that Acacetin administration significantly reduced articular cartilage destruction, abnormal bone remodeling, and osteophyte formation in a model of OA induced by destabilization of the medial meniscus (DMM). Mechanistically, Acacetin was found to interact directly with STING, and inhibit IL-1ß-induced activation of STING, along with the subsequent phosphorylation of the TBK1/NF-κB pathway in chondrocytes. In conclusion, our findings establish Acacetin as an effective inhibitor of STING that protects chondrocytes from IL-1ß-induced damage and slows the progression of OA in mice.

4.
Front Immunol ; 14: 1227364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492580

RESUMO

Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.


Assuntos
Doenças Musculoesqueléticas , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , DNA
5.
J Clin Neurosci ; 73: 294-298, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32035796

RESUMO

The conventional surgical method of percutaneous pedicle screw fixation (PPSF) mainly uses X-ray fluoroscopy guidance to target the vertebral pedicle for screw placement. This study aimed to explore the feasibility of establishing a personalized drill guide template for PPSF based on a three-dimensional (3D) printing technique and to evaluate the accuracy and safety of the method for assisting screw insertion in cadaveric specimens. The T3-L3 trunk cadaveric specimens from six adults were subject to a computed tomography (CT) scan in the prone position. A three-dimensional model containing the back skin contour was reconstructed. A bilateral ideal pedicle screw in the T6-L1 segment was designed. Then, the reverse templates were designed. The two templates were fused and printed into an individualized guide template. PPSF was performed under the assistance of the guide template, and the CT scan was taken postoperatively to access the screw position. Ninety-six pedicle screws were successfully placed on the bilateral vertebral body of the T6-L1 segment with the assistance of a guide template. The guide plate was not loosened or displaced when operated by a single hand, and the operation time was 24.6 ± 7.9 s. The axial CT images after puncture indicated that in 96 puncture needles, 90 needles were grade I and 6 were grade II, with a puncture accuracy rate of 98.6%. In conclusion, an individualized PPSF navigation template was developed using Mimics software and 3D printing prototyping, which improved the accuracy of PPSF in cadaveric specimens.


Assuntos
Imageamento Tridimensional/métodos , Modelagem Computacional Específica para o Paciente , Parafusos Pediculares , Impressão Tridimensional , Técnicas Estereotáxicas/instrumentação , Adulto , Cadáver , Vértebras Cervicais/cirurgia , Feminino , Humanos , Masculino , Fusão Vertebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA