Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(2): 575-584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37218596

RESUMO

BACKGROUND: Breast cancer treatment response evaluation using the response evaluation criteria in solid tumors (RECIST) guidelines, based on tumor volume changes, has limitations, prompting interest in novel imaging markers for accurate therapeutic effect determination. PURPOSE: To use MRI-measured cell size as a new imaging biomarker for assessing chemotherapy response in breast cancer. STUDY TYPE: Longitudinal; animal model. STUDY POPULATION: Triple-negative human breast cancer cell (MDA-MB-231) pellets (4 groups, n = 7) treated with dimethyl sulfoxide (DMSO) or 10 nM of paclitaxel for 24, 48, and 96 hours, and 29 mice with MDA-MB-231 tumors in right hind limbs treated with paclitaxel (n = 16) or DMSO (n = 13) twice weekly for 3 weeks. FIELD STRENGTH/SEQUENCE: Oscillating gradient spin echo and pulsed gradient spin echo sequences at 4.7 T. ASSESSMENT: MDA-MB-231 cells were analyzed using flowcytometry and light microscopy to assess cell cycle phases and cell size distribution. MDA-MB-231 cell pellets were MR imaged. Mice were imaged weekly, with 9, 6, and 14 being sacrificed for histology after MRI at weeks 1, 2, and 3, respectively. Microstructural parameters of tumors/cell pellets were derived by fitting diffusion MRI data to a biophysical model. STATISTICAL TESTS: One-way ANOVA compared cell sizes and MR-derived parameters between treated and control samples. Repeated measures 2-way ANOVA with Bonferroni post-tests compared temporal changes in MR-derived parameters. A P-value <0.05 was considered statistically significant. RESULTS: In vitro experiments showed that the mean MR-derived cell sizes of paclitaxel-treated cells increased significantly with a 24-hours treatment and decreased (P = 0.06) with a 96-hour treatment. For in vivo xenograft experiments, the paclitaxel-treated tumors showed significant decreases in cell size at later weeks. MRI observations were supported by flowcytometry, light microscopy, and histology. DATA CONCLUSIONS: MR-derived cell size may characterize the cell shrinkage during treatment-induced apoptosis, and may potentially provide new insights into the assessment of therapeutic response. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 4.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Dimetil Sulfóxido/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Tamanho Celular
2.
Magn Reson Med ; 90(2): 596-614, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093984

RESUMO

PURPOSE: The purpose is to evaluate the relative contribution from confounding factors (T1 weighting and magnetization transfer) to the CEST ratio (CESTR)-quantified amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) (-3.5) in tumors as well as whether the CESTR can reflect the distribution of the solute concentration (fs ). METHODS: We first provided a signal model that shows the separate dependence of CESTR on these confounding factors and the clean CEST/NOE effects quantified by an apparent exchange-dependent relaxation (AREX) method. We then measured the change in these effects in the 9-L tumor model in rats, through which we calculated the relative contribution of each confounding factor. fs was also fitted, and its correlations with the CESTR and AREX were assessed to evaluate their capabilities to reflect fs . RESULTS: The CESTR-quantified APT shows "positive" contrast in tumors, which arises primarily from R1w at low powers and both R1w and magnetization transfer at high powers. CESTR-quantified NOE (-3.5) shows no or weak contrast in tumors, which is due to the cancelation of R1w and NOE (-3.5), which have opposite contributions. CESTR-quantified APT has a stronger correlation with APT fs than AREX-quantified APT. CESTR-quantified NOE (-3.5) has a weaker correlation with NOE (-3.5) fs than AREX-quantified NOE (-3.5). CONCLUSION: CESTR reflects a combined effect of T1 weighting and CEST/NOE. Both factors depend on fs , which contributes positively to the dependence of CESTR on fs in APT imaging and enhances its correlation with fs . In contrast, these factors have opposite contributions to its dependence on fs in NOE (-3.5) imaging, thereby weakening the correlation.


Assuntos
Neoplasias Encefálicas , Ratos , Animais , Neoplasias Encefálicas/patologia , Prótons , Imageamento por Ressonância Magnética/métodos , Amidas , Aumento da Imagem/métodos
3.
Magn Reson Med ; 89(6): 2432-2440, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740894

RESUMO

PURPOSE: To quantify the variations of the power-law dependences on diffusion time t or gradient frequency f $$ f $$ of extracellular water diffusion measured by diffusion MRI (dMRI). METHODS: Model cellular systems containing only extracellular water were used to investigate the t / f $$ t/f $$ dependence of D ex $$ {D}_{ex} $$ , the extracellular diffusion coefficient. Computer simulations used a randomly packed tissue model with realistic intracellular volume fractions and cell sizes. DMRI measurements were performed on samples consisting of liposomes containing heavy water(D2 O, deuterium oxide) dispersed in regular water (H2 O). D ex $$ {D}_{ex} $$ was obtained over a broad t $$ t $$ range (∼1-1000 ms) and then fit power-law equations D ex ( t ) = D const + const · t - ϑ t $$ {D}_{ex}(t)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {t}^{-{\vartheta}_t} $$ and D ex ( f ) = D const + const · f ϑ f $$ {D}_{ex}(f)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {f}^{\vartheta_f} $$ . RESULTS: Both simulated and experimental results suggest that no single power-law adequately describes the behavior of D ex $$ {D}_{ex} $$ over the range of diffusion times of most interest in practical dMRI. Previous theoretical predictions are accurate over only limited t $$ t $$ ranges; for example, θ t = θ f = - 1 2 $$ {\theta}_t={\theta}_f=-\frac{1}{2} $$ is valid only for short times, whereas θ t = 1 $$ {\theta}_t=1 $$ or θ f = 3 2 $$ {\theta}_f=\frac{3}{2} $$ is valid only for long times but cannot describe other ranges simultaneously. For the specific t $$ t $$ range of 5-70 ms used in typical human dMRI measurements, θ t = θ f = 1 $$ {\theta}_t={\theta}_f=1 $$ matches the data well empirically. CONCLUSION: The optimal power-law fit of extracellular diffusion varies with diffusion time. The dependency obtained at short or long t $$ t $$ limits cannot be applied to typical dMRI measurements in human cancer or liver. It is essential to determine the appropriate diffusion time range when modeling extracellular diffusion in dMRI-based quantitative microstructural imaging.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Difusão , Modelos Biológicos , Simulação por Computador
4.
NMR Biomed ; 35(12): e4799, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35794795

RESUMO

The goal of the current study is to include transcytolemmal water exchange in MR cell size imaging using the IMPULSED model for more accurate characterization of tissue cellular properties (e.g., apparent volume fraction of intracellular space v in ) and quantification of indicators of transcytolemmal water exchange. We propose a heuristic model that incorporates transcytolemmal water exchange into a multicompartment diffusion-based method (IMPULSED) that was developed previously to extract microstructural parameters (e.g., mean cell size d and apparent volume fraction of intracellular space v in ) assuming no water exchange. For t diff ≤ 5 ms, the water exchange can be ignored, and the signal model is the same as the IMPULSED model. For t diff ≥ 30 ms, we incorporated the modified Kärger model that includes both restricted diffusion and exchange between compartments. Using simulations and previously published in vitro cell data, we evaluated the accuracy and precision of model-derived parameters and determined how they are dependent on SNR and imaging parameters. The joint model provides more accurate d values for cell sizes ranging from 10 to 12 microns when water exchange is fast (e.g., intracellular water pre-exchange lifetime τ in ≤ 100 ms) than IMPULSED, and reduces the bias of IMPULSED-derived estimates of v in , especially when water exchange is relatively slow (e.g., τ in > 200 ms). Indicators of transcytolemmal water exchange derived from the proposed joint model are linearly correlated with ground truth τ in values and can detect changes in cell membrane permeability induced by saponin treatment in murine erythroleukemia cancer cells. Our results suggest this joint model not only improves the accuracy of IMPULSED-derived microstructural parameters, but also provides indicators of water exchange that are usually ignored in diffusion models of tissues.


Assuntos
Água Corporal , Camundongos , Animais , Água Corporal/metabolismo , Tamanho Celular , Permeabilidade da Membrana Celular , Difusão
5.
Neuroimage ; 227: 117619, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301942

RESUMO

Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.


Assuntos
Axônios , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo
6.
Magn Reson Med ; 85(2): 748-761, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936478

RESUMO

PURPOSE: This report introduces and validates a new diffusion MRI-based method, termed MRI-cytometry, which can noninvasively map intravoxel, nonparametric cell size distributions in tissues. METHODS: MRI was used to acquire diffusion MRI signals with a range of diffusion times and gradient factors, and a model was fit to these data to derive estimates of cell size distributions. We implemented a 2-step fitting method to avoid noise-induced artificial peaks and provide reliable estimates of tumor cell size distributions. Computer simulations in silico, experimental measurements on cultured cells in vitro, and animal xenografts in vivo were used to validate the accuracy and precision of the method. Tumors in 7 patients with breast cancer were also imaged and analyzed using this MRI-cytometry approach on a clinical 3 Tesla MRI scanner. RESULTS: Simulations and experimental results confirm that MRI-cytometry can reliably map intravoxel, nonparametric cell size distributions and has the potential to discriminate smaller and larger cells. The application in breast cancer patients demonstrates the feasibility of direct translation of MRI-cytometry to clinical applications. CONCLUSION: The proposed MRI-cytometry method can characterize nonparametric cell size distributions in human tumors, which potentially provides a practical imaging approach to derive specific histopathological information on biological tissues.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Animais , Tamanho Celular , Simulação por Computador , Difusão , Humanos
7.
Magn Reson Med ; 84(5): 2671-2683, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32333469

RESUMO

PURPOSE: The goal of this study is to implement a noninvasive method for in vivo mapping of hepatocyte size. This method will have a broad range of clinical and preclinical applications, as pathological changes in hepatocyte sizes are relevant for the accurate diagnosis and assessments of treatment response of liver diseases. METHODS: Building on the concepts of temporal diffusion spectroscopy in MRI, a clinically feasible imaging protocol named IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) has been developed, which is able to report measurements of cell sizes noninvasively. This protocol acquires a selected set of diffusion imaging data and fits them to a model of water compartments in tissues to derive robust estimates of the cellular structures that restrict free diffusion. Here, we adapt and further develop this approach to measure hepatocyte sizes in vivo. We validated IMPULSED in livers of mice and rats and implemented it to image healthy human subjects using a clinical 3T MRI scanner. RESULTS: The IMPULSED-derived mean hepatocyte sizes for rats and mice are about 15-20 µm and agree well with histological findings. Maps of mean hepatocyte size for humans can be achieved in less than 15 minutes, a clinically feasible scan time. CONCLUSION: Our results suggest that this method has potential to overcome major limitations of liver biopsy and provide noninvasive mapping of hepatocyte sizes in clinical applications.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Animais , Tamanho Celular , Hepatócitos , Camundongos , Ratos , Análise Espectral
8.
Magn Reson Med ; 83(6): 2002-2014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31765494

RESUMO

PURPOSE: Cell size is a fundamental characteristic of all tissues, and changes in cell size in cancer reflect tumor status and response to treatments, such as apoptosis and cell-cycle arrest. Unfortunately, cell size can currently be obtained only by pathological evaluation of tumor tissue samples obtained invasively. Previous imaging approaches are limited to preclinical MRI scanners or require relatively long acquisition times that are impractical for clinical imaging. There is a need to develop cell-size imaging for clinical applications. METHODS: We propose a clinically feasible IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) approach that can characterize mean cell sizes in solid tumors. We report the use of a combination of pulse sequences, using different gradient waveforms implemented on clinical MRI scanners and analytical equations based on these waveforms to analyze diffusion-weighted MRI signals and derive specific microstructural parameters such as cell size. We also describe comprehensive validations of this approach using computer simulations, cell experiments in vitro, and animal experiments in vivo and demonstrate applications in preoperative breast cancer patients. RESULTS: With fast acquisitions (~7 minutes), IMPULSED can provide high-resolution (1.3 mm in-plane) mapping of mean cell size of human tumors in vivo on clinical 3T MRI scanners. All validations suggest that IMPULSED provides accurate and reliable measurements of mean cell size. CONCLUSION: The proposed IMPULSED method can assess cell-size variations in tumors of breast cancer patients, which may have the potential to assess early response to neoadjuvant therapy.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Animais , Neoplasias da Mama/diagnóstico por imagem , Tamanho Celular , Imagem de Difusão por Ressonância Magnética , Humanos , Sensibilidade e Especificidade
9.
Magn Reson Med ; 84(4): 1961-1976, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32243662

RESUMO

PURPOSE: Phospholipids are key constituents of cell membranes and serve vital functions in the regulation of cellular processes; thus, a method for in vivo detection and characterization could be valuable for detecting changes in cell membranes that are consequences of either normal or pathological processes. Here, we describe a new method to map the distribution of partially restricted phospholipids in tissues. METHODS: The phospholipids were measured by signal changes caused by relayed nuclear Overhauser enhancement-mediated CEST between the phospholipid Cho headgroup methyl protons and water at around -1.6 ppm from the water resonance. The biophysical basis of this effect was examined by controlled manipulation of head group, chain length, temperature, degree of saturation, and presence of cholesterol. Additional experiments were performed on animal tumor models to evaluate potential applications of this novel signal while correcting for confounding contributions. RESULTS: Negative relayed nuclear Overhauser dips in Z-spectra were measured from reconstituted Cho phospholipids with cholesterol but not for other Cho-containing metabolites or proteins. Significant contrast was found between tumor and contralateral normal tissue signals in animals when comparing both the measured saturation transfer signal and a more specific imaging metric. CONCLUSION: We demonstrated specific relayed nuclear Overhauser effects in partially restricted phospholipid phantoms and similar effects in solid brain tumors after correcting for confounding signal contributions, suggesting possible translational applications of this novel molecular imaging method, which we name restricted phospholipid transfer.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo , Fosfolipídeos
10.
Mult Scler ; 26(4): 457-467, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30907234

RESUMO

BACKGROUND: Assessing the degree of myelin injury in patients with multiple sclerosis (MS) is challenging due to the lack of magnetic resonance imaging (MRI) methods specific to myelin quantity. By measuring distinct tissue parameters from a two-pool model of the magnetization transfer (MT) effect, quantitative magnetization transfer (qMT) may yield these indices. However, due to long scan times, qMT has not been translated clinically. OBJECTIVES: We aim to assess the clinical feasibility of a recently optimized selective inversion recovery (SIR) qMT and to test the hypothesis that SIR-qMT-derived metrics are informative of radiological and clinical disease-related changes in MS. METHODS: A total of 18 MS patients and 9 age- and sex-matched healthy controls (HCs) underwent a 3.0 Tesla (3 T) brain MRI, including clinical scans and an optimized SIR-qMT protocol. Four subjects were re-scanned at a 2-week interval to determine inter-scan variability. RESULTS: SIR-qMT measures differed between lesional and non-lesional tissue (p < 0.0001) and between normal-appearing white matter (NAWM) of patients with more advanced disability and normal white matter (WM) of HCs (p < 0.05). SIR-qMT measures were associated with lesion volumes, disease duration, and disability scores (p ⩽ 0.002). CONCLUSION: SIR-qMT at 3 T is clinically feasible and predicts both radiological and clinical disease severity in MS.


Assuntos
Imageamento por Ressonância Magnética/normas , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Neuroimagem/normas , Adulto , Biomarcadores , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Neuroimagem/métodos , Índice de Gravidade de Doença
11.
J Magn Reson Imaging ; 50(5): 1377-1392, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30925001

RESUMO

The complexity of modern in vivo magnetic resonance imaging (MRI) methods in oncology has dramatically changed in the last 10 years. The field has long since moved passed its (unparalleled) ability to form images with exquisite soft-tissue contrast and morphology, allowing for the enhanced identification of primary tumors and metastatic disease. Currently, it is not uncommon to acquire images related to blood flow, cellularity, and macromolecular content in the clinical setting. The acquisition of images related to metabolism, hypoxia, pH, and tissue stiffness are also becoming common. All of these techniques have had some component of their invention, development, refinement, validation, and initial applications in the preclinical setting using in vivo animal models of cancer. In this review, we discuss the genesis of quantitative MRI methods that have been successfully translated from preclinical research and developed into clinical applications. These include methods that interrogate perfusion, diffusion, pH, hypoxia, macromolecular content, and tissue mechanical properties for improving detection, staging, and response monitoring of cancer. For each of these techniques, we summarize the 1) underlying biological mechanism(s); 2) preclinical applications; 3) available repeatability and reproducibility data; 4) clinical applications; and 5) limitations of the technique. We conclude with a discussion of lessons learned from translating MRI methods from the preclinical to clinical setting, and a presentation of four fundamental problems in cancer imaging that, if solved, would result in a profound improvement in the lives of oncology patients. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1377-1392.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oncologia/tendências , Neoplasias/diagnóstico por imagem , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia , Processamento de Imagem Assistida por Computador , Imunoterapia , Substâncias Macromoleculares , Metástase Neoplásica , Transplante de Neoplasias , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Nanomedicina Teranóstica , Pesquisa Translacional Biomédica/tendências
12.
Magn Reson Med ; 79(4): 2216-2227, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28736875

RESUMO

PURPOSE: Quantitative multi-parametric MRI (mpMRI) methods may allow the assessment of renal injury and function in a sensitive and objective manner. This study aimed to evaluate an array of MRI methods that exploit endogenous contrasts including relaxation rates, pool size ratio (PSR) derived from quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), nuclear Overhauser enhancement (NOE), and apparent diffusion coefficient (ADC) for their sensitivity and specificity in detecting abnormal features associated with kidney disease in a murine model of unilateral ureter obstruction (UUO). METHODS: MRI scans were performed in anesthetized C57BL/6N mice 1, 3, or 6 days after UUO at 7T. Paraffin tissue sections were stained with Masson trichrome following MRI. RESULTS: Compared to contralateral kidneys, the cortices of UUO kidneys showed decreases of relaxation rates R1 and R2 , PSR, NOE, and ADC. No significant changes in CEST effects were observed for the cortical region of UUO kidneys. The MRI parametric changes in renal cortex are related to tubular cell death, tubular atrophy, tubular dilation, urine retention, and interstitial fibrosis in the cortex of UUO kidneys. CONCLUSION: Measurements of multiple MRI parameters provide comprehensive information about the molecular and cellular changes produced by UUO. Magn Reson Med 79:2216-2227, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Córtex Renal/diagnóstico por imagem , Rim/lesões , Imageamento por Ressonância Magnética , Ureter/lesões , Algoritmos , Animais , Meios de Contraste , Difusão , Modelos Animais de Doenças , Fibrose , Interpretação de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Obstrução Ureteral
13.
NMR Biomed ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193448

RESUMO

Chemical exchange saturation transfer (CEST) imaging of amides at 3.5 ppm and fast-exchanging amines at 3 ppm provides a unique means to enhance the sensitivity of detection of, for example, proteins/peptides and neurotransmitters, respectively, and hence can provide important information on molecular composition. However, despite the high sensitivity relative to conventional magnetic resonance spectroscopy (MRS), in practice, CEST often has relatively poor specificity. For example, CEST signals are typically influenced by several confounding effects, including direct water saturation (DS), semi-solid non-specific magnetization transfer (MT), the influence of water relaxation times (T1w ) and nearby overlapping CEST signals. Although several editing techniques have been developed to increase the specificity by removing DS, semi-solid MT and T1w influences, it is still challenging to remove overlapping CEST signals from different exchanging sites. For instance, the amide proton transfer (APT) signal could be contaminated by CEST effects from fast-exchanging amines at 3 ppm and intermediate-exchanging amines at 2 ppm. The current work applies an exchange-dependent relaxation rate (Rex ) to address this problem. Simulations demonstrate that: (1) slowly exchanging amides and fast-exchanging amines have distinct dependences on irradiation powers; and (2) Rex serves as a resonance frequency high-pass filter to selectively reduce CEST signals with resonance frequencies closer to water. These characteristics of Rex provide a means to isolate the APT signal from amines. In addition, previous studies have shown that CEST signals from fast-exchanging amines have no distinct features around their resonance frequencies. However, Rex gives Lorentzian lineshapes centered at their resonance frequencies for fast-exchanging amines and thus can significantly increase the specificity of CEST imaging for amides and fast-exchanging amines.


Assuntos
Amidas/química , Aminas/química , Imageamento por Ressonância Magnética , Prótons , Animais , Encéfalo/diagnóstico por imagem , Ratos
14.
NMR Biomed ; 31(4): e3894, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29388719

RESUMO

The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi-compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing-remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction vax , intrinsic diffusivity Dax , and extra-axonal transverse diffusivity Dex_perp (which is estimated as a function of vax and Dax ) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT-derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's vax , Dax , and Dex_perp measurements all showed high reproducibility. A decrease in vax was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased Dax and increased Dex_perp were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients.


Assuntos
Medula Cervical/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Adulto , Estudos de Coortes , Humanos , Esclerose Múltipla/diagnóstico por imagem , Reprodutibilidade dos Testes
15.
Magn Reson Med ; 77(6): 2239-2249, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27342260

RESUMO

PURPOSE: To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods. METHODS: Computer simulations were performed to incorporate a broad range of intracellular water life times τin (50-∞ ms), cell diameters d (5-15 µm), and intrinsic diffusion coefficient Din (0.6-2 µm2 /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values. RESULTS: Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction fin is intrinsically underestimated due to transcytolemmal water exchange. Din can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro. CONCLUSION: For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and Din with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but fin is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Água Corporal/diagnóstico por imagem , Água Corporal/metabolismo , Membrana Celular/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Magn Reson Med ; 78(2): 588-597, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604612

RESUMO

PURPOSE: To detect, map, and quantify a novel nuclear Overhauser enhancement (NOE)-mediated magnetization transfer (MT) with water at approximately -1.6 ppm [NOE(-1.6)] in rat brain using MRI. METHODS: Continuous wave MT sequences with a variety of radiofrequency irradiation powers were optimized to achieve the maximum contrast of this NOE(-1.6) effect at 9.4 T. The distribution of effect magnitudes, resonance frequency offsets, and line widths in healthy rat brains and the differences of the effect between tumors and contralateral normal brains were imaged and quantified using a multi-Lorentzian fitting method. MR measurements on reconstituted model phospholipids as well as two cell lines (HEK293 and 9L) were also performed to investigate the possible molecular origin of this NOE. RESULTS: Our results suggest that the NOE(-1.6) effect can be detected reliably in rat brain. Pixel-wise fittings demonstrated the regional variations of the effect. Measurements in a rodent tumor model showed that the amplitude of NOE(-1.6) in brain tumor was significantly diminished compared with that in normal brain tissue. Measurements of reconstituted phospholipids suggest that this effect may originate from choline phospholipids. CONCLUSION: NOE(-1.6) could be used as a new biomarker for the detection of brain tumor. Magn Reson Med 78:588-597, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Água/química , Algoritmos , Animais , Células HEK293 , Humanos , Masculino , Imagens de Fantasmas , Ratos , Ratos Endogâmicos F344
17.
Magn Reson Med ; 78(1): 156-164, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27495144

RESUMO

PURPOSE: A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. METHODS: A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 µm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. RESULTS: Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). CONCLUSION: The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 µm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Tamanho Celular , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Magn Reson Med ; 78(3): 881-887, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28653349

RESUMO

PURPOSE: Chemical exchange saturation transfer effects at 2 ppm (CEST@2ppm) in brain have previously been interpreted as originating from creatine. However, protein guanidino amine protons may also contribute to CEST@2ppm. This study aims to investigate the molecular origins and specificity of CEST@2ppm in brain. METHODS: Two experiments were performed: (i) samples containing egg white albumin and creatine were dialyzed using a semipermeable membrane to demonstrate that proteins and creatine can be separated by this method; and (ii) tissue homogenates of rat brain with and without dialysis to remove creatine were studied to measure the relative contributions of proteins and creatine to CEST@2ppm. RESULTS: The experiments indicate that dialysis can successfully remove creatine from proteins. Measurements on tissue homogenates show that, with the removal of creatine via dialysis, CEST@2ppm decreases to approximately 34% of its value before dialysis, which indicates that proteins and creatine have comparable contribution to the CEST@2ppm in brain. However, considering the contribution from peptides and amino acids to CEST@2ppm, creatine may have much less contribution to CEST@2ppm. CONCLUSIONS: The contribution of proteins, peptides, and amino acids to CEST@2ppm cannot be neglected. The CEST@2ppm measurements of creatine in rat brain should be interpreted with caution. Magn Reson Med 78:881-887, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Química Encefálica , Proteínas/química , Ratos
19.
NMR Biomed ; 30(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28272761

RESUMO

Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 µT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 µT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed quantification methods.


Assuntos
Algoritmos , Aminas/metabolismo , Artefatos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Neoplasias Encefálicas/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
NMR Biomed ; 30(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28272785

RESUMO

Chemical exchange saturation transfer (CEST) imaging of fast exchanging amine protons at 3 ppm offset from the water resonant frequency is of practical interest, but quantification of fast exchanging pools by CEST is challenging. To effectively saturate fast exchanging protons, high irradiation powers need to be applied, but these may cause significant direct water saturation as well as non-specific semi-solid magnetization transfer (MT) effects, and thus decrease the specificity of the measured signal. In addition, the CEST signal may depend on the water longitudinal relaxation time (T1w ), which likely varies between tissues and with pathology, further reducing specificity. Previously, an analysis of the asymmetry of saturation effects (MTRasym ) has been commonly used to quantify fast exchanging amine CEST signals. However, our results show that MTRasym is greatly affected by the above factors, as well as asymmetric MT and nuclear Overhauser enhancement (NOE) effects. Here, we instead applied a relatively more specific inverse analysis method, named AREX (apparent exchange-dependent relaxation), that has previously been applied only to slow and intermediate exchanging solutes. Numerical simulations and controlled phantom experiments show that, although MTRasym depends on T1w and semi-solid content, AREX acquired in steady state does not, which suggests that AREX is more specific than MTRasym . By combining with a fitting approach instead of using the asymmetric analysis to obtain reference signals, AREX can also avoid contaminations from asymmetric MT and NOE effects. Animal experiments show that these two quantification methods produce differing contrasts between tumors and contralateral normal tissues in rat brain tumor models, suggesting that conventional MTRasym applied in vivo may be influenced by variations in T1w , semi-solid content, or NOE effect. Thus, the use of MTRasym may lead to misinterpretation, while AREX with corrections for competing effects likely enhances the specificity and accuracy of quantification to fast exchanging pools.


Assuntos
Algoritmos , Aminas/metabolismo , Artefatos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Neoplasias Encefálicas/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA