RESUMO
Based on the 'three critical points' theory of eco-fitness, and by using dynamic weighting and fitting methods, an assessment system for the eco-fitness of county-level agricultural leading industry structure was constructed, and, taking Zhangqiu of Shandong Province, East China as a case, the eco-fitness of county-level agricultural leading industry structure was assessed and predicted. Due to the limited agro-ecological resources, the comprehensive eco-fitness index of four kinds of agricultural leading industry in Zhangqiu presented an upward trend from 2005 to 2010, but a downward trend from 2011 to 2015. The eco-fitness indices of oil crops and fruits would be negative in 2015. The applied research in Zhangqiu confirmed the validity of the assessment system constructed for the eco-fitness of county-level agriculture leading industry structure and the rationality of the prediction model.
Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , China , Ecologia , Modelos TeóricosRESUMO
Based on the organic carbon data of 222 topsoil samples taken from 38 paddy field experiment sites in South China, calculations were made on the relative annual change of topsoil organic carbon content (RAC) and carbon sequestration duration in the paddy fields in South China under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic plus organic fertilization, OF). The RAC under the fertilizations was 0-0.4 g x kg(-1) x a(-1), with an increment of 0.20 and 0.26 g x kg(-1) x a(-1) in double and triple cropping systems, respectively. The RAC was higher in treatments O and OF than in treatments N, NP, and NPK, being the highest (0.32 g x kg(-1) x a(-1)) in treatment OF. The topsoil organic carbon accumulation rate decreased with increasing time, and the carbon sequestration duration in treatments N, NP, NPK, O, and OF was about 22, 28, 38, 57, and 54 years, respectively. Inorganic plus organic fertilization was the most effective practice for soil carbon sequestration in the paddy fields in South China.