Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 578(7795): 392-396, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025037

RESUMO

Extensive efforts have been made to harvest energy from water in the form of raindrops1-6, river and ocean waves7,8, tides9 and others10-17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects-as seen in characterizations of the charge generation and transfer that occur at solid-liquid1-4 or liquid-liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.

2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992136

RESUMO

Various physical tweezers for manipulating liquid droplets based on optical, electrical, magnetic, acoustic, or other external fields have emerged and revolutionized research and application in medical, biological, and environmental fields. Despite notable progress, the existing modalities for droplet control and manipulation are still limited by the extra responsive additives and relatively poor controllability in terms of droplet motion behaviors, such as distance, velocity, and direction. Herein, we report a versatile droplet electrostatic tweezer (DEST) for remotely and programmatically trapping or guiding the liquid droplets under diverse conditions, such as in open and closed spaces and on flat and tilted surfaces as well as in oil medium. DEST, leveraging on the coulomb attraction force resulting from its electrostatic induction to a droplet, could manipulate droplets of various compositions, volumes, and arrays on various substrates, offering a potential platform for a series of applications, such as high-throughput surface-enhanced Raman spectroscopy detection with single measuring time less than 20 s.


Assuntos
Pinças Ópticas , Eletricidade Estática , Acústica , Magnetismo , Análise Espectral Raman
3.
Nano Lett ; 20(8): 5670-5677, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32579374

RESUMO

Previous studies indicate that 2D materials such as graphene, WS2, and MoS2 deposited on oxidized silicon substrate are susceptible to aging due to the adsorption of airborne contamination. As a result, their surfaces become more hydrophobic. However, it is not clear how ubiquitous such a hydrophobization is, and the interplay between the specific adsorbed species and resultant wetting aging remains elusive. Here, we report a pronounced and general hydrophilic-to-hydrophobic wetting aging on 2D InSe films, which is independent of the substrates to synthesize these films (silicon, glass, nickel, copper, aluminum oxide), though the extent of wetting aging is sensitive to the layer of films. Our findings are ascribed to the occurrence and enrichment of airborne contamination that contains alkyl chains. Our results also suggest that the wetting aging effect might be universal to a wide range of 2D materials.

4.
Adv Mater ; 36(9): e2308368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907333

RESUMO

Micro-supercapacitors (MSCs) represent a pressing requirement for powering the forthcoming generation of micro-electronic devices. The simultaneous realization of high-efficiency synthesis of electrode materials and precision patterning for MSCs in a single step presents an ardent need, yet it poses a formidable challenge. Herein, a unique shaped laser-induced patterned electron synchronization excitation strategy has been put forward to photochemical synthesis RuO2 /reduced graphene oxide (rGO) electrode and simultaneously manufacture the micron-scale high-performance MSCs with ultra-high resolution. Significantly, the technique represents a noteworthy advancement over traditional laser direct writing (LDW) patterning and photoinduced synthetic electrode methods. It not only improves the processing efficiency for MSCs and the controllability of laser-induced electrode material but also enhances electric fields and potentials at the interface for better electrochemical performance. The resultant MSCs exhibit excellent area and volumetric capacitance (516 mF cm-2 and 1720 F cm-3 ), and ultrahigh energy density (0.41 Wh cm-3 ) and well-cycle stability (retaining 95% capacitance after 12000 cycles). This investigation establishes a novel avenue for electrode design and underscores substantial potential in the fabrication of diverse microelectronic devices.

5.
Nat Nanotechnol ; 19(2): 219-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845515

RESUMO

Natural surfaces that repel foreign matter are ubiquitous and crucial for living organisms. Despite remarkable liquid repellency driven by surface energy in many organisms, repelling tiny solid particles from surfaces is rare. The main challenge lies in the unfavourable scaling of inertia versus adhesion in the microscale and the inability of solids to release surface energy. Here we report a previously unexplored solid repellency on a honeybee's comb: a catapult-like effect to immediately eject pollen after grooming dirty antennae for self-cleaning. Nanoindentation tests revealed the 38-µm-long comb features a stiffness gradient spanning nearly two orders of magnitude from ~25 MPa at the tip to ~645 MPa at the base. This significantly augments the elastic energy storage and accelerates the subsequent conversion into kinetic energy. The reinforcement in energy storage and conversion allows the particle's otherwise weak inertia to outweigh its adhesion, thereby suppressing the unfavourable scaling effect and realizing solid repellency that is impossible in conventional uniform designs. We capitalize on this to build an elastomeric bioinspired stiffness-gradient catapult and demonstrate its generality and practicality. Our findings advance the fundamental understanding of natural catapult phenomena with the potential to develop bioinspired stiffness-gradient materials, catapult-based actuators and robotic cleaners.

6.
Nat Commun ; 15(1): 4762, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834547

RESUMO

Liquid-solid contact electrification (CE) is essential to diverse applications. Exploiting its full implementation requires an in-depth understanding and fine-grained control of charge carriers (electrons and/or ions) during CE. Here, we decouple the electrons and ions during liquid-solid CE by designing binary superhydrophobic surfaces that eliminate liquid and ion residues on the surfaces and simultaneously enable us to regulate surface properties, namely work function, to control electron transfers. We find the existence of a linear relationship between the work function of superhydrophobic surfaces and the as-generated charges in liquids, implying that liquid-solid CE arises from electron transfer due to the work function difference between two contacting surfaces. We also rule out the possibility of ion transfer during CE occurring on superhydrophobic surfaces by proving the absence of ions on superhydrophobic surfaces after contact with ion-enriched acidic, alkaline, and salt liquids. Our findings stand in contrast to existing liquid-solid CE studies, and the new insights learned offer the potential to explore more applications.

7.
Research (Wash D C) ; 6: 0023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040478

RESUMO

Achieving rapid shedding of droplets from solid surfaces has received substantial attention because of its diverse applications. Previous studies have focused on minimizing contact times of liquid droplets interacting with stationary surfaces, yet little consideration has been given to that of moving surfaces. Here, we report a different scenario: A water droplet rapidly detaches from micro/nanotextured rotating surfaces in an intriguing doughnut shape, contributing to about 40% contact time reduction compared with that on stationary surfaces. The doughnut-shaped bouncing droplet fragments into satellites and spontaneously scatters, thus avoiding further collision with the substrate. In particular, the contact time is highly dependent on impact velocities of droplets, beyond previous descriptions of classical inertial-capillary scaling law. Our results not only deepen the fundamental understanding of droplet dynamics on moving surfaces but also suggest a synergistic mechanism to actively regulate the contact time by coupling the kinematics of droplet impingement and surface rotation.

8.
ACS Nano ; 17(11): 10713-10720, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219078

RESUMO

Taxis is an instinctive behavior of living organisms to external dangers or benefits. Here, we report a taxis-like behavior associated with liquid droplets on charged substrates in response to the external stimuli, referred to as droplet electrotaxis. Such droplet electrotaxis enables us to use either solid or liquid (such as water) matter, even a human finger, as stimuli to spatiotemporal precisely manipulate the liquid droplets of various physicochemical properties, including water, ethanol with low surface tension, viscous oil, and so on. Droplet electrotaxis also features a flexible configuration that even can manifest in the presence of an additional layer, such as the ceramic with a thickness of ∼10 mm. More importantly, superior to existing electricity-based strategies, droplet electrotaxis can harness the charges generated from diverse manners, including pyroelectricity, triboelectricity, piezoelectricity, and so on. These properties dramatically increase the application scenarios of droplet electrotaxis, such as cell labeling and droplet information recording.

9.
Adv Mater ; 34(2): e2105996, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734449

RESUMO

Shaping soft and conductive materials into preferential architectures via 3D printing is highly attractive for numerous applications ranging from tactile devices to bioelectronics. A landmark type of soft and conductive materials is hydrogels/ionogels. However, 3D-printed hydrogels/ionogels still suffer from a fundamental bottleneck: limited stability in their electrical-mechanical properties caused by the evaporation and leakage of liquid within hydrogels/ionogels. Although photocurable liquid-free ion-conducting elastomers can circumvent these limitations, the associated photocurable process is cumbersome and hence the printing quality is relatively poor. Herein, a fast photocurable, solid-state conductive ionoelastomer (SCIE) is developed that enables high-resolution 3D printing of arbitrary architectures. The printed building blocks possess many promising features over the conventional ion-conducting materials, including high resolution architectures (even ≈50 µm overhanging lattices), good Young's modulus (up to ≈6.2 MPa), and stretchability (fracture strain of ≈292%), excellent conductivity tolerance in a wide range of temperatures (from -30 to 80 °C), as well as fine elasticity and antifatigue ability even after 10 000 loading-unloading cycles. It is further demonstrated that the printed building blocks can be programmed into 3D flexible tactile sensors such as gyroid-based piezoresistive sensor and gap-based capacitive sensor, both of which exhibit several times higher in sensitivity than their bulky counterparts.


Assuntos
Elastômeros , Hidrogéis , Elasticidade , Condutividade Elétrica , Impressão Tridimensional
10.
Sci Adv ; 8(51): eade2085, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542697

RESUMO

Manipulating liquid is of great significance in fields from life sciences to industrial applications. Owing to its advantages in manipulating liquids with high precision and flexibility, electrowetting on dielectric (EWOD) has been widely used in various applications. Despite this, its efficient operation generally needs electrode arrays and sophisticated circuit control. Here, we develop a largely unexplored triboelectric wetting (TEW) phenomenon that can directly exploit the triboelectric charges to achieve the programmed and precise water droplet control. This key feature lies in the rational design of a chemical molecular layer that can generate and store triboelectric charges through agile triboelectrification. The TEW eliminates the requirement of the electric circuit design and additional source input and allows for manipulating liquids of various compositions, volumes, and arrays on various substrates in a controllable manner. This previously unexplored wetting mechanism and control strategy will find diverse applications ranging from controllable chemical reactions to surface defogging.

11.
Sci Adv ; 8(25): eabo7698, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749507

RESUMO

Bubbles have been extensively explored as energy carriers ranging from boiling heat transfer and targeted cancer diagnosis. Yet, despite notable progress, the kinetic energy inherent in small bubbles remains difficult to harvest. Here, we develop a transistor-inspired bubble energy generator for directly and efficiently harvesting energy from small bubbles. The key points lie in designing dielectric surface with high-density electric charges and tailored surface wettability as well as transistor-inspired electrode configuration. The synergy between these features facilitates fast bubble spreading and subsequent departure, transforms the initial liquid/solid interface into gas/solid interface under the gating of bubble, and yields an output at least one order of magnitude higher than existing studies. We also show that the output can be further enhanced through rapid bubble collapse at the air/liquid interface and multiple bubbles synchronization. We envision that our design will pave the way for small bubble-based energy harvesting in liquid media.

12.
Innovation (Camb) ; 3(5): 100301, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36051817

RESUMO

Extensive work have been done to harvest untapped water energy in formats of raindrops, flows, waves, and others. However, attaining stable and efficient electricity generation from these low-frequency water kinetic energies at both individual device and large-scale system level remains challenging, partially owing to the difficulty in designing a unit that possesses stable liquid and charge transfer properties, and also can be seamlessly integrated to achieve preferential collective performances without the introduction of tortuous wiring and redundant node connection with external circuit. Here, we report the design of water electricity generators featuring the combination of lubricant layer and transistor-like electrode architecture that endows enhanced electrical performances in different working environments. Such a design is scalable in manufacturing and suitable for facile integration, characterized by significant reduction in the numbers of wiring and nodes and elimination of complex interfacing problems, and represents a significant step toward large-scale, real-life applications.

13.
Nat Commun ; 13(1): 4584, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933460

RESUMO

Developing underwater adhesives that can rapidly and reversibly switch the adhesion in wet conditions is important in various industrial and biomedical applications. Despite extensive progresses, the manifestation of underwater adhesion with rapid reversibility remains a big challenge. Here, we report a simple strategy that achieves strong underwater adhesion between two surfaces as well as rapid and reversible detachment in on-demand manner. Our approach leverages on the design of patterned hybrid wettability on surfaces that selectively creates a spatially confined integral air shell to preserve the water bridge in underwater environment. The overall adhesion strength can be multiplied by introducing multiple air shells and rapidly broken by disturbing the integrity of the protective air shell in response to the applied voltage on two surfaces. Our design can be constructed on the flexible substrate with hybrid wettability, which can be applied to non-conductive substrates and adapted to more complicated morphologies, extending the choice of underlying materials.


Assuntos
Adesivos , Água , Eletricidade , Fenômenos Físicos , Molhabilidade
14.
Microsyst Nanoeng ; 7: 49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567762

RESUMO

Electric energy generation from falling droplets has seen a hundred-fold rise in efficiency over the past few years. However, even these newest devices can only extract a small portion of the droplet energy. In this paper, we theoretically investigate the contributions of hydrodynamic and electric losses in limiting the efficiency of droplet electricity generators (DEG). We restrict our analysis to cases where the droplet contacts the electrode at maximum spread, which was observed to maximize the DEG efficiency. Herein, the electro-mechanical energy conversion occurs during the recoil that immediately follows droplet impact. We then identify three limits on existing droplet electric generators: (i) the impingement velocity is limited in order to maintain the droplet integrity; (ii) much of droplet mechanical energy is squandered in overcoming viscous shear force with the substrate; (iii) insufficient electrical charge of the substrate. Of all these effects, we found that up to 83% of the total energy available was lost by viscous dissipation during spreading. Minimizing this loss by using cascaded DEG devices to reduce the droplet kinetic energy may increase future devices efficiency beyond 10%.

15.
ACS Nano ; 15(1): 1785-1794, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33404217

RESUMO

Mussel-inspired conductive hydrogels are attractive for the development of next-generation self-adhesive, flexible skinlike sensors. However, despite extensive progress, there are still some daunting challenges that hinder their applications, such as inferior optical transparency, low catechol content (e.g., poor adhesion), as well as limited sensation performances. Here, we report a dopamine-triggered gelation (DTG) strategy for fabricating mussel-inspired, transparent, and conductive hydrogels. The DTG design leverages on the dual functions of dopamine, which serves as both polymerization initiator and dynamic mediator to elaborate and orchestrate the cross-linking networks of hydrogels, allowing for pronounced adhesion, robust elasticity, self-healing ability, excellent injectability and three-dimensional printability, reversible and tunable transparent-opaque transition, and thermoresponsive feature. These preferable performances enable DTG hydrogels as self-adhesive, flexible skinlike sensors for achieving multiple sensations toward pressure, strain, and temperature, even an extraordinary visual perception effect, making it a step closer in the exploration of future biomimetic skin.


Assuntos
Dopamina , Hidrogéis , Adesivos , Condutividade Elétrica , Pele
16.
Natl Sci Rev ; 6(3): 540-550, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691903

RESUMO

Energy harvesting devices that prosper in harsh environments are highly demanded in a wide range of applications ranging from wearable and biomedical devices to self-powered and intelligent systems. Particularly, over the past several years, the innovation of triboelectric nanogenerators (TENGs) that efficiently convert ambient kinetic energy of water droplets or wave power to electricity has received growing attention. One of the main bottlenecks for the practical implications of such devices originates from the fast degradation of the physiochemical properties of interfacial materials under harsh environments. To overcome these challenges, here we report the design of a novel slippery lubricant-impregnated porous surface (SLIPS) based TENG, referred to as SLIPS-TENG, which exhibits many distinctive advantages over conventional design including optical transparency, configurability, self-cleaning, flexibility, and power generation stability, in a wide range of working environments. Unexpectedly, the slippery and configurable lubricant layer not only serves as a unique substrate for liquid/droplet transport and optical transmission, but also for efficient charge transfer. Moreover, we show that there exists a critical thickness in the liquid layer, below which the triboelectric effect is almost identical to that without the presence of such a liquid film. Such an intriguing charge transparency behavior is reminiscent of the wetting transparency and van der Waals potential transparency of graphene previously reported, though the fundamental mechanism remains to be elucidated. We envision that the marriage of these two seemingly totally different arenas (SLIPS and TENG) provides a paradigm shift in the design of robust and versatile energy devices that can be used as a clean and longer-lifetime alternative in various working environments.

17.
Lab Chip ; 17(18): 3168-3175, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28812769

RESUMO

We propose a simple but efficient multiplex coaxial flow focusing (MCFF) process for single-step fabrication of multicompartment Janus microcapsules (MJMs) in a wide range of operating parameters. The produced MJMs consist of a multicompartmental core-shell structure with material compositions tunable in individual shell and core compartments. Potential applications of such a MJM agent are demonstrated in both benchtop and in vitro experiments. For the benchtop experiment, magnetic nanoparticles are loaded into one of the shell compartments and photopolymerized under ultraviolet light for controlled alignment and rotation of the microcapsules in a magnetic field. For the in vitro experiment, four different types of cells are encapsulated in the desired compartments of sodium alginate MJMs and co-cultured for seven days. By increasing the number of coaxial needles, we are also able to produce MJMs with three or more compartments. Our studies have shown that the proposed MCFF process is able to produce MJMs with desired material compositions and narrow size distribution. This process is inexpensive and scalable for mass production of various MJMs in its potential applications in biomedical imaging, drug delivery, and regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA